Abstract: The deep-buried tunnel has the characteristics of high in-situ stress, high osmotic pressure and rich sources of disasters. These factors can significantly increase the risk of water-inrush. Drilling-and-blasting excavation method must be adopted in some sections. The water-inrush in drilling-and-blasting excavated deep-buried tunnel are commonly characterized by concealment, complexity, suddenness and destructiveness and the disaster mechanism is more complicated. There are still some problems in the existing researches, such as the detection and identification of disaster source are inaccurate, the constructed disaster mechanism is unclear, the prevention and control of malignant disasters are inadequate. The existing theories and technologies are not fully applicable anymore, thus, the prevention and mitigation of geological hazards are the key scientific issues remained to be solved. The existing research status are analyzed from three aspects: the advanced geological prediction, the disaster mechanism of water-inrush, and the evolution and mitigation of constructed disaster. Three suggestions were put forward about the key points and directions of the research on the water-inrush in deep tunnel. First of all, it is necessary that comprehensive application of big data analysis and the latest research results of other subjects in order to achieve quantitative and accurate detection. Furthermore, the catastrophic model of disaster sources should be established from the perspective of energy storage and release. The occurrence conditions and emergency mechanism of engineering disasters need revealing. In addition, the method of calculating the safety of impermeable silt layers should be developed and the existing research results also should be applied to practical engineering. Last but not least, the risk assessment theory of the water-rich soft rock section of deep-buried tunnel should be studied seriously. According to the actual conditions of the tunnel, the different technologies of disaster control should be combined organically to maximize the benefits of technology, economy, resources and environment.
焦玉勇, 张为社, 欧光照, 邹俊鹏, 陈光辉. 深埋隧道钻爆法开挖段突涌水灾害的形成机制及防控研究综述[J]. 隧道与地下工程灾害防治, 2019, 1(1): 36-46.
JIAO Yuyong, ZHANG Weishe, OU Guangzhao, ZOU Junpeng, CHEN Guanghui. Review of the evolution and mitigation of the water-inrush disaster in drilling-and-blasting excavated deep-buried tunnels. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 36-46.
[1] 王梦恕.中国铁路、隧道与地下空间发展概况[J]. 隧道建设,2010,30(4):351-364. WANG Mengshu. An overview of development of railways, tunnels and underground works in China[J]. Tunnel Construction, 2010, 30(4): 351-364. [2] 《中国公路学报》编辑部.中国隧道工程学术研究综述·2015[J].中国公路学报,2015,28(5):1-65. Editorial Department of China Journal of Highway and Transport. Review on China’ tunnel engineering research: 2015[J]. China Journal of Highway and Transport, 2015, 28(5):1-65. [3] 洪开荣. 我国隧道及地下工程发展现状与展望[J]. 隧道建设,2015,35(2):95-107. HONG Kairong. State-of-art and prospect of tunnels and underground works in China[J]. Tunnel Construction, 2015, 35(2): 95-107. [4] 洪开荣. 我国隧道及地下工程近两年的发展与展望[J]. 隧道建设,2017,37(2):123-134. HONG Kairong. Development and prospects of tunnels and underground works in China in recent two years[J]. Tunnel Construction, 2017, 37(2): 123-134. [5] 中国工程院. 岩爆、突水突泥灾害预测预报预警与防治控制技术[M]. 北京:高等教育出版社,2013:3-9. [6] JIAO Yuyong, TIAN Hunan, LIU Yunzhen, et al. Prediction of tunneling hazardous geological zones using the active seismic approach[J]. Near Surface Geophysics, 2015, 13(4): 333-342. [7] 李术才,王康,李利平,等. 岩溶隧道突水灾害形成机理及发展趋势[J]. 力学学报,2017,49(1):22-30. LI Shucai, WANG Kang, LI Liping, et al. Mechanical mechanism and development trend of water-inrush disasters in karst tunnels[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(1): 22-30. [8] 李术才,刘斌,孙怀凤,等. 隧道施工超前地质预报研究现状及发展趋势[J]. 岩石力学与工程学报,2014,33(6):1090-1113. LI Shucai, LIU Bin, SUN Huaifeng, et al. State of art and trend of advanced geological prediction in tunnel construction[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(6): 1090-1113. [9] 李利平,李术才,石少帅, 等. 基于应力-渗流-损伤耦合效应的断层活化突水机理研究[J]. 岩石力学与工程学报,2011,30(增刊1):3295-3304. LI Liping, LI Shucai, SHI Shaoshuai, et al. Water inrush mechanism study of fault activation induced by coupling effect of stress-seepage-damage[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(Suppl.1): 3295-33043. [10] 王媛,陆宇光,倪小东, 等. 深埋隧道开挖过程中突水与突泥的机理研究[J]. 水利学报,2011,42(5):595-601. WANG Yuan, LU Yuguang, NI Xiaodong, et al. Study on the mechanism of water inrush and mud in the process of excavation of deep tunnel[J]. Journal of Hydraulic Engineering, 2011, 42(5): 595-601. [11] 刘云祯. TGP206与TSP203地质预报系统优势对比分析[J]. 隧道建设,2014,34(03):198-204. LIU Yunzhen. Comparison and contrast between TGP206 and TSP203 advance geology prediction system: advantages of TGP206[J]. Tunnel Construction, 2014, 34(03): 198-204. [12] 钟世航,孙宏志,王荣,等. 陆地声纳法在隧道施工时预报断层、溶洞的效果[J]. 隧道建设,2007(增刊2):21-25. ZHONG Shihang, SUN Hongzhi, WANG Rong, et al. Research on survey effects of faults and karst caves using land-sonar in tunnel construction[J]. Tunnel Construction, 2007(Suppl. 2): 21-25. [13] 钟世航,孙宏志,李术才,等.隧道及地下工程施工中岩溶裂隙水及断层、溶洞等隐患的探查、预报[J]. 岩石力学与工程学报,2012,31(增刊1):3298-3327. ZHONG Shihang, SUN Hongzhi, LI Shucai, et al. Detection and forecasting for hidden danger of karst fissure water and other geological disasters during construction of tunnels and underground projects[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(Suppl. 1): 3298-3327. [14] ZHANG Fengshou, XIE Xiongyao, HUANG Hongwei. Application of ground penetrating radar in grouting evaluation for shield tunnel construction[J]. Tunnelling and Underground Space Technology, 2010, 25: 99-107. [15] ZHANG Guohua, JIAO Yuyong, CHEN Libiao, et al. An analytical model for assessing the collapse risk during mountain tunnel construction[J]. Canadian Geotechnical Journal, 2016, 53(2): 326-342. [16] SLOB E, SATO M, OLHOEFT G. Surface and borehole ground penetrating-radar developments[J]. Geophysics, 2010, 75(5): 103-120. [17] CHANG Pingyu, ALUMBAUGH D. An analysis of the cross-borehole GPR tomography for imaging the development of the infiltrated fluid plume[J]. Journal of Geophysics and Engineering, 2011, 8(2): 294-307. [18] KIM J H, KOBAYASHI T, LEE S K. Admittance inversion of GPR transmission for cross hole tomography[J]. Journal of Applied Geophysics, 2012, 81(81): 57-67. [19] BELINA F, IRVING J, ERNST J, et al. Analysis of an iterative deconvolution approach for estimating the source wavelet during wave form inversion of crosshole georadar data[J]. Journal of Applied Geophysics, 2012, 78: 20-30. [20] DORN C, LINDE N, DOETSCH J, et al. Fracture imaging within a granitic rock aquifer using multiple-offset single-hole and cross-hole GPR reflection data[J]. Journal of Applied Geophysics, 2012, 78: 123-132. [21] 王鹰,陈强,魏有仪,等. 红外线探测技术在圆梁山隧道突水预报中的应用[J]. 岩石力学与工程学报,2003,22(5):855-857. WANG Ying, CHEN Qiang, WEI Youyi, et al. Application of infrared acquisition technology in prediction of water gushing in Yuanliangshan Tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(5): 855-857. [22] 刘斌,李术才,聂利超,等. 隧道含水构造直流电阻率法超前探测三维反演成像[J]. 岩土工程学报,2012,34(10):1866-1876. LIU Bin, LI Shucai, NIE Lichao, et al. Advanced detection of water-bearing geological structures in tunnels using 3D DC resistivity inversion tomography method[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(10): 1866-1876. [23] 王传武,李术才,聂利超,等. 隧道三维电阻率E-SCAN超前探测反演与优化方法研究[J]. 岩土工程学报,2017,39(2):218-227. WANG Chuanwu, LI Shucai, NIE Lichao, et al. 3D E-SCAN resistivity inversion and optimized method in tunnel advanced prediction[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(2): 218-227. [24] 李术才,刘斌,李树忱,等. 基于激发极化法的隧道含水地质构造超前探测研究[J]. 岩石力学与工程学报,2011,30(7):1297-1309. LI Shucai, LIU Bin, LI Shuchen, et al. Study of advanced detection for tunnel water-bearing geological structures with induced polarization method[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(7): 1297-1309. [25] 何发亮,郭如军,李苍松,等. 岩体温度法隧道施工掌子面前方涌水预报[M]. 成都:西南交通大学出版社,2009:22-75. [26] GREBEN J M, MEYER R, KIMMIE Z. The underground application of magnetic resonance sounding[J]. Journal of Applied Geophysics, 2011, 75(2): 220-226. [27] 林君,段清明,王应吉. 核磁共振找水仪原理与应用[M]. 北京:科学出版社,2011:1-11. [28] 李术才,薛翊国,张庆松,等. 高风险岩溶地区隧道施工地质灾害综合预报预警关键技术研究[J]. 岩石力学与工程学报,2008,27(7):1297-1307. LI Shucai, XUE Yiguo, ZHANG Qingsong, et al. Key technology study on comprehensive prediction and early-warning of geological hazards during tunnel construction in high-risk karst areas[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(7):1297-1307. [29] 王浩,覃卫民,焦玉勇,等.大数据时代的岩土工程监测——转折与机遇[J]. 岩土力学,2014,35(9):2634-2641. WANG Hao, QIN Weimin, JIAO Yuyong, et al. Transitions and opportunities of geotechnical engineering monitoring in coming big data era[J]. Rock and Soil Mechanics, 2014, 35(9): 2634-2641. [30] 杨建华,张文举,卢文波,等. 深埋洞室岩体开挖卸荷诱导的围岩开裂机制[J]. 岩石力学与工程学报,2013,32(6):1222-1228. YANG Jianhua, ZHANG Wenju, LU Wenbo, et al. Cracking mechanism of surrounding rock induced by release of excavation load in deep tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(6): 1222-1228. [31] 李利平. 高风险岩溶隧道突水灾变演化机制及其应用研究[D]. 济南:山东大学,2009. LI Liping. Study on catastrophe evolution mechanism of karst water inrush and its engineering application of high risk karst tunnel[D]. Jinan: Shandong University, 2009. [32] 马栋. 深埋岩溶对隧道安全影响分析及处治技术研究[D]. 北京:北京交通大学,2012. MA Dong. Study on impact mechanism of deep buried karst to tunnel safety and the treatment technique[D]. Beijing: Beijing Jiaotong University, 2012. [33] TANG Junhua, BAI Haibo, YAO Banhua, et al. Theoretical analysis on water-inrush mechanism of concealed collapse pillars in floor[J]. Mining Science and Technology(China), 2011, 21(1):57-60. [34] 孙玉杰. 裂隙岩体渗流应力耦合机制研究及突水数值模拟[D]. 武汉:长江科学院,2009. SUN Yujie. Study on the coupling mechanism of stress and fluid flow in fractured rock mass and the numerical simulation of the sudden inflow of water[D]. Wuhan: Changjiang River Scientific Research Institute of Changjiang Water Resources Commission, 2009. [35] HE Keqiang, ZHANG Shenquan, WANG Fei, et al. The karst collapses induced by environmental changes of the groundwater and their distribution rules in North China[J]. Environmental Earth Sciences, 2010, 61(5): 1075-1084. [36] 张玉柱,卢文波,陈明,等. 爆炸应力波驱动的岩石开裂机制[J]. 岩石力学与工程学报,2014,33(增刊1):3144-3149. ZHANG Yuzhu, LU Wenbo, CHEN Ming, et al. Rock cracking mechanism driven by explosive stress wave[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(Suppl.1): 3144-3149. [37] 严鹏,谢良涛,范勇,等. 不同开挖方式下深部岩体应变能的释放机制[J]. 煤炭学报,2015,40(增刊1):60-68. YAN Peng, XIE Liangtao, FAN Yong, et al. Releasing mechanisms of strain energy during excavation of deep tunnels with different methods[J]. Journal of China Coal Society, 2015, 40(Suppl.1): 60-68. [38] READ R S. 20 years of excavation response studies at AECL's underground research laboratory[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(8): 1251-1275. [39] 单仁亮,王二成,宋立伟,等. 直墙半圆拱巷道爆破震动数值分析[J]. 岩土力学,2013,34(增刊1):437-443. SHAN Renliang, WANG Ercheng, SONG Liwei, et al. Blasting vibration numerical analysis of vertical wall semicircular arch roadway[J]. Rock and Soil Mechanics, 2013, 34(Supp.1): 437-443. [40] 刘亮,卢文波,陈明,等. 钻爆开挖条件下岩体临界破碎状态的损伤阈值统计研究[J]. 岩石力学与工程学报,2016,35(6):1133-1140. LIU Liang, LU Wenbo, CHEN Ming, et al. Statistic damage threshold of critical broken rock mass under blasting load[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(6): 1133-1140. [41] 张秀丽,焦玉勇,刘泉声,等.节理对爆炸波传播影响的数值研究[J].岩土力学,2008,29(3):717-721. ZHANG Xiuli, JIAO Yuyong, LIU Quansheng, et al. Numerical study on effect of joints on blasting wave propagation in rock mass[J]. Rock and Soil Mechanics, 2008, 29(3): 717-721. [42] 李术才,袁永才,李利平,等. 钻爆施工条件下岩溶隧道掌子面突水机制及最小安全厚度研究[J].岩土工程学报,2015,37(2):313-320. LI Shucai, YUAN Yongcai, LI Liping, et al. Water inrush mechanism and minimum safe thickness of rock wall of karst tunnel face under blast excavation[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(2):313-320. [43] 李利平,李术才,石少帅,等.岩体突水通道形成过程中应力-渗流-损伤多场耦合机制[J].采矿与安全工程学报,2012,29(2): 232-238. LI Liping, LI Shucai, SHI Shaoshuai, et al. Multi-field coupling mechanism of seepage damage for the water inrush channel formation process of coal mine[J]. Journal of Mining & Safety Engineering, 2012, 29(2): 232-238. [44] COOK M A, COOK U D, CLAY R B, et al. Behavior of rock during blasting[J]. Transactions of the Society of Mining Engineers, 1966, 10(2): 17-25. [45] ABUOV M G, AITALIEV Sh M, ERMEKOV T M, et al. Studies of the effect of dynamic processes during explosive break-out upon the roof of mining excavations[J]. Journal of Mining Science, 1989, 24(6):581-590. [46] CAI M. Influence of stress path on tunnel excavation response——numerical tool selection and modeling strategy[J]. Tunnelling and Underground Space Technology, 2008, 23(6): 618-628. [47] HOEK E, BROWN E T. Practical estimates of rock mass strength[J]. International Journal of Rock Mechanics and Mining Sciences, 1997, 34(8): 1165-1186. [48] YU Maohong, ZAN Yuewen, ZHAO Jian, et al. A unified strength criterion for rock material[J]. International Journal of Rock Mechanics and Mining Sciences, 2002, 39(8): 975-989. [49] 张传庆,冯夏庭,周辉,等. 深部试验隧道围岩脆性破坏及数值模拟[J]. 岩石力学与工程学报,2010,29(10):2063-2068. ZHANG Chuanqing, FENG Xiating, ZHOU Hui, et al. Brittle failure of surrounding rock mass in deep test tunnels and its numerical simulation[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(10): 2063-2068. [50] 李宏,安其美,马元春. 深埋洞室地应力状态与岩爆相关性研究[J].岩石力学与工程学报,2005,24(增刊1):4822-4826. LI Hong, AN Qimei, MA Yuanchun, et al. Study on relativity between rock burst and stress state in deep tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(Suppl.1): 4822-4826. [51] ZHAO H, MA F, GUO J. Regularity and formation mechanism of largescale abrupt karst collapse in southern China in the first half of 2010[J]. Natural Hazards, 2012, 60(3):1037-1054. [52] HE K Q, YU G M, LU Y R. Palaeo-karst collapse pillars in northern China and their damage to the geological environments[J]. Environmental Geology, 2009, 58(5):1029-1040. [53] 王遇国. 岩溶隧道突水灾害与防治研究[D]. 北京:中国铁道科学研究院,2010. WANG Yuguo. Study on scourge and prevention of karst tunnel water inrush[D]. Beijing: China Academy of Railway Sciences, 2010. [54] 孙谋,刘维宁. 高风险岩溶隧道掌子面突水机制研究[J]. 岩土力学,2011,32(4):1175-1180. SUN Mou, LIU Weining. Research on water inrush mechanism induced by karst tunnel face with high risk[J]. Rock Soil Mech, 2011, 32(4): 1175-1180. [55] WANG X, WANG M, ZHANG M, et al. Theoretical and experimental study of external water pressure on tunnel lining in controlled drainage under high water level[J]. Tunnelling and Underground Space Technology, 2008, 23(5): 552-560. [56] 石少帅. 深长隧道充填型致灾构造渗透失稳突涌水机理与风险控制及工程应用[D]. 济南:山东大学,2014. SHI Shaoshuai, Study on seepage failure mechanism and risk control of water inrush induced by filled disaster structure in deep-long tunnel and engineering applications[D]. Jinan: Shandong University, 2014. [57] 郭佳奇. 岩溶隧道防突厚度及突水机制研究[D]. 北京:北京交通大学,2011. GUO Jiaqi. Study on against-inrush thickness and waterburst mechanism of karst tunnel[D]. Beijing: Beijing Jiaotong Univesity, 2011. [58] 郭佳奇,乔春生. 岩溶隧道掌子面突水机制及岩墙安全厚度研究[J]. 铁道学报,2012,34(3):105-111. GUO Jiaqi, QIAO Chunsheng. Study on water-inrush mechanism and safe thickness of rock wall of karst tunnel face[J]. Journal of the China Railway Society, 2012, 34(3):105-111. [59] 关宝树. 漫谈矿山法隧道技术第十四讲—隧道涌水及其控制方法[J]. 隧道建设,2017,37(1):1-10. GUAN Baoshu. Tunneling by mining method: lecture XIV—tunnel water inrush and its countermeasures[J]. Tunnel Construction, 2017, 37(1): 1-10. [60] 关宝树. 漫谈矿山法隧道技术第十五讲—隧道涌水控制技术[J]. 隧道建设,2017,37(2):115-122. GUAN Baoshu. Tunneling by mining method: lecture XV—control technologies for tunnel water inrush[J]. Tunnel Construction, 2017, 37(2):115-122. [61] 李召峰,李术才,张庆松,等.富水破碎岩体注浆加固模拟试验及应用研究[J].岩土工程学报,2016,38(12):2246-2253. LI Zhaofeng, LI Shucai, ZHAGN Qingsong, et al. Model tests on grouting reinforcement of water-rich broken rock mass[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(12):2246-2253.