摘要 为提高岩体结构面信息获取精度,基于结构面三维点云数据,改进DBSCAN(density-based spatial clustering of applications with noise)密度聚类算法。利用k近邻算法与基于密度比S的评价准则划分出不同密度点云区域以自适应设置参数ε并分析点云法向量,引入法向量夹角阈值T判断属于同组结构面的点集并用相同颜色显示。本研究讨论了参数最优化组合对识别结果的影响,实现优势结构面与产状赤平投影的快速分析。研究结果能够为结构面信息的智能化高效测量提供一种可靠的应用方法。
Abstract: To improve the accuracy of information acquisition, the density-based spatial clustering application with noise(DBSCAN)algorithm was improved based on 3D point clouds. The k-nearest neighbor algorithm and the evaluation criterion based on density ratio S were used to divide the point cloud regions with different densities in order to set parameter ε and analyze the point cloud normal vector adaptive. The angle threshold T of normal vectors was introduced to determine the points belonging to the same plane and the points belonging to the same plane were displayed with the same colour. This paper discussed the influence of different parameter combinations on the identification results and enabled a fast analysis of rock joints. The research results could provide a reliable application method for efficient measurement of discontinuity information.
李胜, 熊自明, 刘一鸣, 李志浩. 基于改进DBSCAN算法的岩体结构面智能识别方法[J]. 隧道与地下工程灾害防治, 2022, 4(2): 49-58.
LI Sheng, XIONG Ziming, LIU Yiming, LI Zhihao. Intelligent identification of rock discontinuities based on an improved DBSCAN algorithm. Hazard Control in Tunnelling and Underground Engineering, 2022, 4(2): 49-58.
[1] 程强,董秀军,余建华,等. 典型高陡边坡高位地质灾害调查及评估[J]. 工程地质学报,2017,25(增刊1):289-294. CHEN Qiang, DONG Xiujun, YU Jianhua, et al. High position geological disaster investigation and evaluation of typical high-steep slope[J]. Journat of Engineering Geology, 2017, 25(Suppl.1):289-294. [2] 许强, 陈伟. 单体危岩崩塌灾害风险评价方法: 以四川省丹巴县危岩崩塌体为例[J]. 地质通报, 2009, 28(8): 1039-1046. XU Qiang, CHEN Wei. Risk assessment method for single rockfall geo-disaster: a case study on the rockfall in Danba County, Sichuan, China[J]. Geological Bulletin of China, 2009, 28(8): 1039-1046. [3] 苏胜忠. 边坡工程勘察中崩塌落石运动模式及轨迹分析[J]. 工程地质学报, 2011, 19(4): 577-581. SU Shengzhong. Motion mode, calculation and analysis on rock Falls in slope engineering investigation[J]. Journal of Engineering Geology, 2011, 19(4): 577-581. [4] MAULDON M. Estimating mean fracture trace length and density from observations in convex windows[J]. Rock Mechanics and Rock Engineering, 1998, 31(4): 201-216. [5] 刘昌军, 高立东, 丁留谦, 等. 应用激光扫描技术进行岩体结构面的半自动统计研究[J]. 水文地质工程地质, 2011, 38(2): 52-57. LIU Changjun, GAO Lidong, DING Liuqian, et al. Research of semi-automatic statistics of rock mass discontinuity applying laser scanning technology[J]. Hydrogeology & Engineering Geology, 2011, 38(2): 52-57. [6] STURZENEGGER M, STEAD D. Close-range terrestrial digital photogrammetry and terrestrial laser scanning for discontinuity characterization on rock cuts[J]. Engineering Geology, 2009, 106(3/4): 163-182. [7] 董秀军, 黄润秋. 三维激光扫描技术在高陡边坡地质调查中的应用[J]. 岩石力学与工程学报, 2006(增刊2): 3629-3635. DONG Xiujun, HUANG Runqiu. Application of 3D laser scanning technology to geologic survey of high and steep slope[J]. Chinese Journal of Rock Mechanics and Engineering, 2006(Suppl.2): 3629-3635. [8] GE Y F, TANG H M, XIA D, et al. Automated measurements of discontinuity geometric properties from a 3D-point cloud based on a modified region growing algorithm[J]. Engineering Geology, 2018, 242: 44-54. [9] 梁玉飞, 裴向军, 崔圣华, 等. 基于地面三维激光点云的滑坡破坏边界岩体结构特征分析[J]. 岩石力学与工程学报, 2021, 40(6): 1209-1225. LIANG Yufei, PEI Xiangjun, CUI Shenghua, et al. Analysis of rock mass structure characteristics of landslide boundaries based on ground 3D laser point cloud[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(6): 1209-1225. [10] 陈娜, 蔡小明, 夏金梧, 等. 基于三维激光点云技术的岩体结构面智能解译[J]. 地球科学, 2021, 46(7): 2351-2361. CHEN Na, CAI Xiaoming, XIA Jinwu, et al. Intelligent interpretation of rock mass discontinuity based on three-dimensional laser point cloud[J]. Earth Science, 2021, 46(7): 2351-2361. [11] 赵佳斌, 章杨松, 李晓昭. 基于摄影测量三维点云的岩体结构面自动识别方法[J]. 科学技术与工程, 2017, 17(28): 240-244. ZHAO Jiabin, ZHANG Yangsong, LI Xiaozhao. Automatic identification method of rock mass discontinuities based on 3D point cloud from photogrammetry[J]. Science Technology and Engineering, 2017, 17(28): 240-244. [12] 葛云峰,夏丁,唐辉明,等. 基于三维激光扫描技术的岩体结构面智能识别与信息提取[J]. 岩石力学与工程学报,2017,36(12):3050-3061. GE Yunfeng, XIA Ding, TANG Huiming, et al. Intelligent identification and extraction of geometric properties of rock discontinuities based on terrestrial laser scanning[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(12):3050-3061. [13] 褚宏亮,殷跃平,曹峰,等. 大型崩滑灾害变形三维激光扫描监测技术研究[J]. 水文地质工程地质,2015,42(3):128-134. CHU Hongliang, YIN Yueping, CAO Feng, et al. Research on deformation monitoring of large collapses and landslides based on 3D laser scanning technology[J]. Hydrogeology & Engineering Geology, 2015, 42(3):128-134. [14] 王培涛,覃拓,黄正均,等. 基于三维点云的岩体结构面信息快速化识别方法研究[J]. 岩石力学与工程学报,2021,40(3):503-519. WANG Peitao, QIN Tuo, HUANG Zhengjun, et al. Fast identification of geometric properties of rock discontinuities based on 3D point cloud[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(3):503-519. [15] 刘昌军,丁留谦,孙东亚. 基于激光点云数据的岩体结构面全自动模糊群聚分析及几何信息获取[J]. 岩石力学与工程学报,2011,30(2):358-364. LIU Changjun, DING Liuqian, SUN Dongya. Automatic fuzzy clustering analysis and geometric information acquisition of rock mass discontinuities based on laser point cloud data[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(2):358-364.