Please wait a minute...
 
隧道与地下工程灾害防治  2022, Vol. 4 Issue (2): 39-48    DOI: 10.19952/j.cnki.2096-5052.2022.02.05
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
考虑多因素影响的双侧壁导坑法施工参数研究
李相兵1,梁波1,2*,鲁思源1
1.重庆交通大学土木工程学院, 重庆 400074;2.重庆交通大学山区桥梁与隧道工程国家重点实验室, 重庆 400074
Research on construction parameters of double side heading method considering multiple factors
LI Xiangbing1, LIANG Bo1,2*, LU Siyuan1
1. College of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074, China;
2. State Key Laboratory of Mountain and Bridge Engineering, Chongqing Jiaotong University, Chongqing 400074, China
下载:  PDF (4337KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对双侧壁导坑法施工参数优化研究通常采用单因素分析存在一定片面性的问题,以重庆轨道交通9号线(地铁)一期工程五里店地铁车站隧道为研究背景,选取临时支撑半径、中岩墙厚度、开挖进尺3个施工参数作为影响因素,以拱顶最大竖向位移和边墙最大水平位移作为计算指标,应用FLAC3D有限差分软件进行数值模拟分析。研究结果表明:通过多因素分析得出的施工参数最优组合为临时支撑半径23.0 m、中岩墙厚度9.0 m、开挖进尺0.75 m;以多因素分析结果为基础的回归法反分析得出的施工参数最优组合为临时支撑半径24.0 m、中岩墙厚度8.0 m、开挖进尺0.8 m;通过对比3组最优施工参数组合的拱顶最大竖向位移和边墙最大水平位移,得出以多因素分析结果为基础采用回归法反分析得到的施工参数更具优越性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李相兵
梁波
鲁思源
关键词:  双侧壁导坑法  正交设计  数值模拟  围岩稳定性    
Abstract: The construction parameter optimization research of the double-side heading method usually adopts single factor analysis, which has certain limitations. The research took the Wulidian Subway Station Tunnel Project as the research background, which is one of the first phase projects of Chongqing Rail Transit Line 9. The radius of temporary support, the thickness of the middle rock wall, and the excavation footage were used as influencing factors, and the maximum vertical displacement of the vault and the maximum horizontal displacement of the side wall were used as the calculation indicators. The finite difference software FLAC3D was used to carry out multi-factor numerical simulation analysis. The results showed that the optimal combination of construction parameters obtained by multi factor analysis were that temporary support radius was 23.0 m, medium rock wall thickness was 9.0 m and excavation footage was 0.75 m; the optimal combination obtained by the back analysis of regression method based on the results of multi factor analysis that temporary support radius was 24.0 m, medium rock wall thickness was 8.0 m and excavation footage was 0.8 m. By comparing the maximum vertical displacement of the arch crown and the maximum horizontal displacement of the side wall of the three groups of optimal construction parameters, it was concluded that the construction parameters obtained by regression back analysis based on the results of multi factor analysis have more advantages.
Key words:  double side heading method    orthogonal design    numerical simulation    stability of surrounding rock
收稿日期:  2021-11-10      修回日期:  2022-01-20      发布日期:  2022-06-20     
中图分类号:  U455.4  
基金资助: 重庆市科委资助项目(cstc2019jscx-msxmX0295)
通讯作者:  梁波(1964— ),男,四川隆昌人,博士,教授,博士生导师,主要研究方向为隧道与地下工程理论和技术. E-mail:    E-mail:  liang_laoshi@126.com
作者简介:  李相兵(1996— ),男,重庆奉节人,硕士研究生,主要研究方向为隧道与地下工程. E-mail:2550296651@qq.com.
引用本文:    
李相兵, 梁波, 鲁思源. 考虑多因素影响的双侧壁导坑法施工参数研究[J]. 隧道与地下工程灾害防治, 2022, 4(2): 39-48.
LI Xiangbing, LIANG Bo, LU Siyuan. Research on construction parameters of double side heading method considering multiple factors. Hazard Control in Tunnelling and Underground Engineering, 2022, 4(2): 39-48.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2022/V4/I2/39
[1] 昝永奇. 超浅埋下穿高速公路暗挖隧道变形控制施工技术研究[J]. 隧道建设, 2017,37(增刊1): 99-106. ZAN Yongqi. Study of construction deformation control technology for super shallow-buried mined tunnel crossing underneath highway[J]. Tunnel Construction, 2017, 37(Suppl.1): 99-106.
[2] 亓长君. 复杂地质条件下大跨径地铁浅埋暗挖隧道双侧壁导坑法施工技术[J]. 铁道建筑技术, 2016(3): 10-13. QI Changjun. Double-side heading method for a long-span shallow-buried metro tunnel construction in complex geological conditions[J]. Railway Construction Technology, 2016(3): 10-13.
[3] 杨景贺,王朋,王晓卿,等. 大断面隧道双侧壁导坑法施工数值分析[J]. 施工技术, 2019,48(1): 79-83. YANG Jinghe, WANG Peng, WANG Xiaoqing, et al. Numerical analysis of double side heading method for large-section tunnel[J]. Construction Technology, 2019, 48(1): 79-83.
[4] 韩立志. 浅埋偏压隧道双侧壁导坑法开挖数值模拟研究[J]. 公路, 2020,65(5): 324-328. HAN Lizhi. Numerical simulation and research on excavation of shallow buried biased tunnel with both sides heading method[J]. Highway, 2020, 65(5): 324-328.
[5] ZHANG Zhien, HUANG Mingli, WU Baohua. Risk analysis and control factors based on excavation of a large underground subway station under construction[J]. Symmetry, 2020, 12(10): 1629-1629.
[6] 崔振东. 双侧壁导坑法施工大断面地铁车站中隔墙岩柱开挖稳定性分析及施工关键技术[J]. 隧道建设, 2017,37(9): 1140-1145. CUI Zhendong. Stability analysis of excavation of intermediate diaphragm wall in large cross-section metro station constructed by double-side-drift method and its key technologies[J]. Tunnel Construction, 2017, 37(9): 1140-1145.
[7] HE Bing, YIN Guangzhi. Stability analysis of tunnel during the excavation based on ANSYS[J]. Applied Mechanics and Materials, 2014, 577: 1135-1138.
[8] 高峰,谭绪凯. 双侧壁导坑法施工的大断面隧道的稳定性分析[J].重庆交通大学学报(自然科学版),2010,29(3):363-366. GAO Feng, TAN Xukai. Stability analysis on large section tunnel with double-side-drift method[J]. Journal of Chongqing Jiaotong University(Natural Science), 2010, 29(3): 363-366.
[9] 王慨慷. 双侧壁导坑法隧道不同工序施工地表沉降规律研究[J]. 铁道建筑技术, 2020(6): 113-117. WANG Kaikang. Study on the surface deformation law of tunnel construction in different working procedures by double side heading method[J]. Railway Construction Technology, 2020(6): 113-117.
[10] 陈凯, 刘宁, 刘向远,等. 超大断面双侧壁导坑法核心土宽度研究[J]. 科学技术与工程, 2020,20(26):10912-10917. CHEN Kai, LIU Ning, LIU Xiangyuan, et al. Study on the width of core soil by double-sidewall guide pit method with super large section[J]. Science Technology and Engineering, 2020, 20(26): 10912-10917.
[11] 孙世强,杨晓东. 双侧壁导坑法隧道临时支护拆除方案比选[J]. 施工技术, 2018,47(增刊4): 1386-1389. SUN Shiqiang, YANG Xiaodong. Comparison of temporary support demolition program for both side drift method tunnel[J]. Construction Technology, 2018, 47(Suppl.4): 1386-1389.
[12] 王丽锋. 基于正交设计的大断面隧道分部开挖步距敏感性研究[J].公路交通科技(应用技术版), 2019,15(10): 239-242. WANG Lifeng. Study on sensitivity of excavation step of large section tunnel based on orthogonal design[J]. Journal of Highway and Transportation Research and Development(Applied Technology), 2019, 15(10): 239-242.
[13] 陈林杰,梁波,王国喜. 浅埋暗挖超大断面地铁车站隧道开挖方法研究[J]. 地下空间与工程学报, 2013,9(4): 928-933. CHEN Linjie, LIANG Bo, WANG Guoxi. Study of excavation method for shallow-buried subway station tunnels with super-large section[J]. Chinese Journal of Underground Space and Engineering, 2013, 9(4): 928-933.
[14] 李浩,韩立军,孟庆彬,等. V级围岩二车道隧道双侧壁导坑法优化分析[J]. 现代隧道技术,2015,52(6): 118-125. LI Hao, HAN Lijun, MENG Qingbin, et al. Optimization of the double-side-drift method for a two-lane tunnel in surrounding rock of grade V[J]. Modern Tunnelling Technology, 2015, 52(6): 118-125.
[15] 胡文清, 郑颖人, 钟昌云. 木寨岭隧道软弱围岩段施工方法及数值分析[J]. 地下空间, 2004(2): 194-197. HU Wenqing, ZHENG Yingren, ZHONG Changyun. Construction method and numerical analysis of the weak surrounding rock section of Muzhailing Tunnel[J]. Underground Space, 2004(2): 194-197.
[16] 向海辉,冯红耀,赵文强,等. 软弱围岩隧道不同施工方法数值分析研究[J]. 公路, 2020,65(5): 334-340. XIANG Haihui, FENG Hongyao, ZHAO Wenqiang, et al. Numerical analysis of different construction methods of tunnel in soft surrounding rock[J]. Highway, 2020, 65(5): 334-340.
[17] 何成. 超前小导管注浆加固技术在轨道交通回填土隧道中的应用研究[D]. 重庆: 重庆大学, 2016. HE Cheng.Research on the application of advance small duct grouting reinforcement technology in rail transit backfill tunnel[D]. Chongqing: Chongqing University, 2016.
[18] 王辉,王鹏,梁明纯. 地铁隧道开挖超前小导管预注浆参数对地表沉降的影响[J]. 铁道建筑, 2019,59(3): 52-56. WANG Hui, WANG Peng, LIANG Mingchun. Influence of parameters for pre-grouting with advanced small duct on ground surface settlement during metro tunnel excavation[J]. Railway Engineering, 2019, 59(3): 52-56.
[19] 马栋. 复杂地质条件下三线车站隧道施工方案优化研究[J]. 隧道建设(中英文), 2018, 38(增刊2):253-260. MA Dong. Optimization of construction method for tri-lane tunnel under complex geological conditions[J].Tunnel Construction, 2018, 38(Suppl.2): 253-260.
[20] 招商局重庆交通科研设计院有限公司.公路隧道设计规范:第一册 土建工程 JTG 3370.1—2018[S].北京:人民交通出版社,2019.
[21] 王高林,李岩,温泉,等. 双侧壁导坑法在大断面黄土隧道施工中的应用[J]. 公路交通科技(应用技术版), 2019,15(12): 20-22. WANG Gaolin, LI Yan, WEN Quan, et al. Application of double side heading method in construction of large section loess tunnel[J]. Journal of Highway and Transportation Research and Development(Applied Technology), 2019, 15(12): 20-22.
[22] 苏永华,孙旺,方砚兵. 基于正交试验的隧道开挖面位移释放分析[J]. 湖南大学学报(自然科学版), 2017,44(11): 156-163. SU Yonghua, SUN Wang, FANG Yanbing. Analysis on displacement release of tunnel face based on orthogonal tests[J]. Journal of Hunan University(Natural Sciences), 2017, 44(11):156-163.
[1] 孙港, 王军祥, 孟祥竹, 郭连军, 孙杰. 基于近场动力学理论的岩石双孔爆破动态断裂行为数值模拟[J]. 隧道与地下工程灾害防治, 2023, 5(2): 42-58.
[2] 赵兴东, 窦翔, 李勇, 王立君. 基于Ventsim的地下水封洞库建造期通风方式优选[J]. 隧道与地下工程灾害防治, 2023, 5(1): 8-17.
[3] 黄兴, 张炜, 殷建钢, 施皓, 张晓磊. 填埋场扩建后下穿隧道结构的安全性[J]. 隧道与地下工程灾害防治, 2023, 5(1): 55-63.
[4] 党晓宇, 马劲松. 基于桩板组合结构等代仰拱的公路隧道加固方案[J]. 隧道与地下工程灾害防治, 2023, 5(1): 90-96.
[5] 关振长,周宇轩,吕春波,吕荔炫. 空气间隔装药周边眼爆破精细化数值模拟[J]. 隧道与地下工程灾害防治, 2022, 4(4): 11-19.
[6] 黄昕, 谷冠思, 张子新, 李昀. 考虑渗流的泥水平衡盾构隧道稳定性数值模拟[J]. 隧道与地下工程灾害防治, 2022, 4(2): 28-38.
[7] 赵文强,周建伟,袁兆廷,吴铭祥,蒋亚龙,耿大新,刘长红. 大跨径地下罐室穹顶预留中心岩柱开挖施工围岩稳定性模拟[J]. 隧道与地下工程灾害防治, 2022, 4(2): 81-89.
[8] 石宗涛. 济南黄河隧道泥水盾构开挖面稳定性分析[J]. 隧道与地下工程灾害防治, 2022, 4(1): 71-77.
[9] 李钊, 梁庆国, 孙文, 曹小平. 隧道台阶法施工上台阶长度对隧道变形的影响[J]. 隧道与地下工程灾害防治, 2022, 4(1): 55-62.
[10] 曹成威, 石钰锋, 徐长节, 侯世磊, 龚宏华, 纪松岩. 某明挖深基坑地下连续墙非对称配筋优化设计[J]. 隧道与地下工程灾害防治, 2022, 4(1): 63-70.
[11] 房倩, 杜建明, 王赶, 杨晓旭. 模型边界对圆形隧道开挖引起地表沉降的影响分析[J]. 隧道与地下工程灾害防治, 2022, 4(1): 10-17.
[12] 夏英杰, 孟庆坤, 唐春安, 张永彬, 赵丹晨, 赵振兴. 岩石破裂过程分析方法在隧道工程模拟中的应用[J]. 隧道与地下工程灾害防治, 2021, 3(3): 36-49.
[13] 黄笑, 肖培伟, 董林鹭, 杨兴国, 徐奴文. 高地应力地下洞室群开挖过程岩体力学响应及破坏机制[J]. 隧道与地下工程灾害防治, 2021, 3(3): 85-93.
[14] 张鸿勇, 张艳杰, 刘春, 施斌, 曹政. 基于离散元孔隙密度流法的地铁隧道收敛变形注浆整治分析[J]. 隧道与地下工程灾害防治, 2021, 3(3): 100-110.
[15] 赵高峰,徐志超,郝益民,扈晓冬,邓稀肥. 基于4D-LSM的隧道围岩爆破振动和损伤判定研究[J]. 隧道与地下工程灾害防治, 2021, 3(3): 11-19.
[1] QIAN Qihu. Scientific use of the urban underground space to construction the harmonious livable and beautiful city[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 1 -7 .
[2] DENG Mingjiang, LIU Bin. Challenges, countermeasures and development direction of geological forward-prospecting for TBM cluster tunneling in super-long tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 8 -19 .
[3] DING Xiuli, ZHANG Yuting, ZHANG Chuanjian, YAN Tianyou, HUANG Shuling. Review on countermeasures and their adaptability evaluation to tunnels crossing active faults[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 20 -35 .
[4] JIAO Yuyong, ZHANG Weishe, OU Guangzhao, ZOU Junpeng, CHEN Guanghui. Review of the evolution and mitigation of the water-inrush disaster in drilling-and-blasting excavated deep-buried tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 36 -46 .
[5] ZHANG Qingsong, ZHANG Lianzhen, LI Peng, FENG Xiao. New progress in grouting reinforcement theory of water-rich soft stratum in underground engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 47 -57 .
[6] XIA Kaiwen, XU Ying, CHEN Rong. Dynamic tests of rocks subjected to simulated deep underground environments[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 58 -75 .
[7] HONG Kairong. Study on rock breaking and wear of TBM hob in high-strength high-abrasion stratum[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 76 -85 .
[8] TAN Zhongsheng. Application experimental study of high-strength lattice girders with heat treatment in tunnel engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 86 -92 .
[9] CHEN Jianxun, LUO Yanbin. The stability of structure and its control technology for lager-span loess tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 93 -101 .
[10] JING Hongwen, YU Liyuan, SU Haijian, GU Jincai, YIN Qian. Development and application of catastrophic experiment system for water inrush in surrounding rock of deep tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 102 -110 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn