Please wait a minute...
 
隧道与地下工程灾害防治  2022, Vol. 4 Issue (2): 59-65    DOI: 10.19952/j.cnki.2096-5052.2022.02.07
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
软土地层盾构下穿铁路枢纽沉降规律及施工控制
赵旭伟1,2
1.西南交通大学交通隧道工程教育部重点实验室, 四川 成都 610031;2.中铁上海设计院集团有限公司, 上海 200070
The settlement law and construction control of railway hub traversed by a shield tunnel in soft ground
ZHAO Xuwei1,2
1. Key Laboratory of Traffic Tunnel Engineering of Ministry of Education, Southwest Jiaotong University, Chengdu 610031, Sichuan, China;
2. China Railway Shanghai Design Institute Group Co., Ltd., Shanghai 200070, China
下载:  PDF (7228KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 嘉兴市域外配水工程(杭州方向)输水盾构隧道长距离下穿乔司编组站出发场11股道、杭州北车辆段17股道及道岔区和沪昆铁路上行线2股道,其地层和工程建筑环境复杂,对变形控制要求极高。本研究以此案例为背景,采用现场实测与有限元模拟相结合的方法,探讨了盾构下穿大型铁路枢纽过程中铁路变形规律及安全控制措施。结果表明:软土地层深埋隧道采用摩尔-库伦模型计算出的道床沉降与监测结果一致性较好,建议穿越道岔区隧道埋深不小于35 m;盾构下穿既有线道床顶面最大沉降与地层损失呈线性关系,建议穿越道岔区地层损失率不大于0.3%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵旭伟
关键词:  铁路枢纽  施工控制  沉降  数值计算  现场试验    
Abstract: Jiaxing City's extraterritorial water distribution project(Hangzhou direction)long-distance shield tunneling underneath 2 roads of the Shanghai-Kunming railway Upstream Line, 17 roads and turnout area of Hangzhou North Depot, 11 roads of Departure Yard of Qiaosi Marshalling Stationas section road Interchange project. The stratum and engineering building environment are complex, and the deformation control requirements are very high. Based on this case, the method of field test and finite element simulation were used to discusse the railway deformation law and safety control measures in the process of shield tunneling through large railway hub. The results indicated that the numerical model results matched the monitoring data well, which calculated by Mohr-Coulomb model for deep buried tunnels in soft soil layer. It was recommended that the buried depth of the tunnel should not be less than 35 m when the shield passed through the turnout area; the analysis on the relationship between different loss ration and the maximum settlement of subsidence bed traversed by a shield tunnel revealed that the maximum settlement of the subsidence bed had a linear relationship with the formation loss. The recommended loss ratio of a shield tunnel passing through the turnout area should be no more than 0.3%.
Key words:  railway hub    construction control    settlement    numerical calculation    field test
收稿日期:  2022-01-10      修回日期:  2022-05-09      发布日期:  2022-06-20     
中图分类号:  U29  
作者简介:  赵旭伟(1981— ),男,吉林辽源人,博士,高级工程师,主要研究方向为隧道工程的设计与研究. E-mail:zxw@sty.sh.cn
引用本文:    
赵旭伟. 软土地层盾构下穿铁路枢纽沉降规律及施工控制[J]. 隧道与地下工程灾害防治, 2022, 4(2): 59-65.
ZHAO Xuwei. The settlement law and construction control of railway hub traversed by a shield tunnel in soft ground. Hazard Control in Tunnelling and Underground Engineering, 2022, 4(2): 59-65.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2022/V4/I2/59
[1] 周顺华. 地铁盾构法隧道下穿工程[M]. 北京: 科学出版社, 2017.
[2] 吕培林,周顺华.软土地区盾构隧道下穿铁路干线引起的线路沉降规律分析[J]. 中国铁道科学, 2007,28(2): 12-16. LÜ Peilin, ZHOU Shunhua. Analysis on upper rail settlement in soft ground resulting from shield tunnelling across main railway line[J]. China Railway Science, 2007, 28(2):12-16.
[3] 肖立,张庆贺.铁路轨道下盾构施工所致地面沉降的数值模拟[J]. 同济大学学报(自然科学版),2011,39(9):1286-1291. XIAO Li, ZHANG Qinghe. 3D numerical modeling of ground settlements caused by shield tunneling across multi-tracks of railway[J].Journal of Tongji University(Natural Science), 2011, 39(9):1286-1291.
[4] 霍军帅,王炳龙,周顺华. 地铁盾构隧道下穿城际铁路地基加固方案安全性分析[J]. 中国铁道科学, 2011,32(5): 71-77. HUO Junshuai, WANG Binglong, ZHOU Shunhua. Safety analysis of foundation reinforcement scheme for shield tunnel under-passing intercity railway [J]. China Railway Science, 2011, 32(5): 71-77.
[5] SHAN Y, ZHOU S H, SHU Y. Differential settlement and soil dynamic stress of a culvert-embankment transition zone due to an adjacent shield tunnel construction[J]. KSCE Journal of Civil Engineering, 2018, 22(7): 2325-2333.
[6] 彭华,杨志蔚,曹全,等. 盾构下穿铁路碎石道床沉降规律及施工参数控制[J]. 工程力学, 2019, 36(增刊1): 222-228. PENG Hua, YANG Zhiwei, CAO Quan, et al. The settlement law of railway ballast beds traversed by a shield tunnel and the control of shield construction parameters[J]. Engineering Mechanics, 2019, 36(Suppl.1): 222-228.
[7] 吴昌胜, 朱志铎. 不同直径盾构隧道地层损失率的对比研究[J]. 岩土工程学报, 2018, 40(12): 2257-2265. WU Changsheng, ZHU Zhiduo. Comparative study on ground loss ratio due to shield tunnel with different diameters[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(12): 2257-2265.
[8] 魏纲. 盾构隧道施工引起的土体损失率取值及分布研究[J]. 岩土工程学报, 2010, 32(9): 1354-1361. WEI Gang. Selection and distribution of ground loss ratio induced by shield tunnel construction[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(9): 1354-1361.
[9] 李成辉. 铁路轨道[M]. 北京: 中国铁道出版社, 2010.
[10] 张云,殷宗泽,徐永福. 盾构法隧道引起的地表变形分析[J]. 岩石力学与工程学报, 2002, 21(3): 388-392. ZHANG Yun, YIN Zongze, XU Yongfu. Analysis on three-dimensional ground surface deformations due to shield tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(3): 388-392.
[11] 中华人民共和国住房和城乡建设部. 城市轨道交通工程监测技术规范: GB 50911—2013[S]. 北京: 中国建筑工业出版社, 2014.
[12] 周静增,王建华,闫自海,等. 软土地层小净距重叠隧道盾构施工相互扰动影响分析及控制措施[J]. 隧道与地下工程灾害防治, 2021, 3(2): 61-68. ZHOU Jingzeng, WANG Jianhua, YAN Zihai, et al. Mutual disturbance effects of different construction sequence on overlapping shield tunnels with small net distance in soft soil layer and its control methods[J]. Hazard Control in Tunnelling and Underground Engineering, 2021, 3(2): 61-68.
[13] 刘晓杰,梁庆国,刘传新,等. 富水深埋黄土隧道变形规律及控制措施[J]. 隧道与地下工程灾害防治, 2021, 3(2): 23-32. LIU Xiaojie, LIANG Qingguo, LIU Chuanxin, et al. Deformation laws and control measures of deep-buried loess tunnel with abundant water[J]. Hazard Control in Tunnelling and Underground Engineering, 2021, 3(2): 23-32.
[1] 张亮亮. 纵向排烟V形坡隧道火灾烟流特性现场火灾试验研究[J]. 隧道与地下工程灾害防治, 2023, 5(2): 71-79.
[2] 高燕, 吴晓东, 田嘉逸. 岩土力学参数的空间变异性对地面沉降的影响[J]. 隧道与地下工程灾害防治, 2023, 5(1): 18-31.
[3] 张治国,程志翔,陈杰,吴钟腾,李云正. 盾构隧道接缝渗漏水诱发既有管线变形模型试验[J]. 隧道与地下工程灾害防治, 2022, 4(3): 77-91.
[4] 潘秋景,李晓宙,黄杉,汪来,王树英,方国光. 机器学习在盾构隧道智能施工中的应用——综述与展望[J]. 隧道与地下工程灾害防治, 2022, 4(3): 10-30.
[5] 黄昕, 谷冠思, 张子新, 李昀. 考虑渗流的泥水平衡盾构隧道稳定性数值模拟[J]. 隧道与地下工程灾害防治, 2022, 4(2): 28-38.
[6] 房倩, 杜建明, 王赶, 杨晓旭. 模型边界对圆形隧道开挖引起地表沉降的影响分析[J]. 隧道与地下工程灾害防治, 2022, 4(1): 10-17.
[7] 吴健,王其炎,陈建军. 大口径平行顶管施工对地表沉降的影响[J]. 隧道与地下工程灾害防治, 2021, 3(4): 68-74.
[8] 王纪伟,张连震,张庆松,杨旆,陈新,王建辉,韩子川,王洪超,孙子正,屠文锋. 富水裂隙岩体注浆材料适用性现场试验研究[J]. 隧道与地下工程灾害防治, 2021, 3(1): 58-67.
[9] 魏纲,黄时雨,蒋丞武,虞兴福,王新泉. 上软下硬地层盾构工作井开挖受力与变形监测分析[J]. 隧道与地下工程灾害防治, 2020, 2(4): 29-36.
[10] 陶永虎,饶军应,熊鹏,彭浩,聂崇欣,赵昌杰,彭星,孔德禹,王亚奇. 地铁暗挖隧道下穿既有火车站站场施工方案安全性评估[J]. 隧道与地下工程灾害防治, 2020, 2(4): 74-82.
[11] 刘涛,杨克形,姜磊,黄旭峰,高瑞,刘世奇. 极限近距侧穿桩基盾构隧道开挖过程扰动效应[J]. 隧道与地下工程灾害防治, 2020, 2(1): 61-67.
[12] 张治国, 张洋彬, 王志伟, 方蕾, 马少坤, 师敏之, 魏纲. 类矩形截面隧道开挖诱发邻近管线变形模型试验与数值模拟研究[J]. 隧道与地下工程灾害防治, 2019, 1(4): 85-96.
[13] 于永军, 朱万成, 李连崇, 魏晨慧, 张秀凤, 秦超, 宋旭. 深地层煤岩组合体水力压裂裂缝扩展模拟研究[J]. 隧道与地下工程灾害防治, 2019, 1(3): 96-108.
[14] 温法庆. 土压平衡盾构穿越浅基础拉杆拱桥施工沉降控制技术研究[J]. 隧道与地下工程灾害防治, 2019, 1(2): 114-123.
[15] 谭忠盛. 热处理高强钢筋格栅在隧道工程应用的试验研究[J]. 隧道与地下工程灾害防治, 2019, 1(1): 86-92.
[1] QIAN Qihu. Scientific use of the urban underground space to construction the harmonious livable and beautiful city[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 1 -7 .
[2] DENG Mingjiang, LIU Bin. Challenges, countermeasures and development direction of geological forward-prospecting for TBM cluster tunneling in super-long tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 8 -19 .
[3] DING Xiuli, ZHANG Yuting, ZHANG Chuanjian, YAN Tianyou, HUANG Shuling. Review on countermeasures and their adaptability evaluation to tunnels crossing active faults[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 20 -35 .
[4] JIAO Yuyong, ZHANG Weishe, OU Guangzhao, ZOU Junpeng, CHEN Guanghui. Review of the evolution and mitigation of the water-inrush disaster in drilling-and-blasting excavated deep-buried tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 36 -46 .
[5] ZHANG Qingsong, ZHANG Lianzhen, LI Peng, FENG Xiao. New progress in grouting reinforcement theory of water-rich soft stratum in underground engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 47 -57 .
[6] XIA Kaiwen, XU Ying, CHEN Rong. Dynamic tests of rocks subjected to simulated deep underground environments[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 58 -75 .
[7] HONG Kairong. Study on rock breaking and wear of TBM hob in high-strength high-abrasion stratum[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 76 -85 .
[8] TAN Zhongsheng. Application experimental study of high-strength lattice girders with heat treatment in tunnel engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 86 -92 .
[9] CHEN Jianxun, LUO Yanbin. The stability of structure and its control technology for lager-span loess tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 93 -101 .
[10] JING Hongwen, YU Liyuan, SU Haijian, GU Jincai, YIN Qian. Development and application of catastrophic experiment system for water inrush in surrounding rock of deep tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 102 -110 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn