Please wait a minute...
 
隧道与地下工程灾害防治  2022, Vol. 4 Issue (3): 92-98    DOI: 10.19952/j.cnki.2096-5052.2022.03.07
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
矩形顶管开舱施工过程中地层稳定性分析
刘维,俞淼,吴垠龙,史培新,吴奔
苏州大学轨道交通学院, 江苏 苏州 215000
Formation stability analysis during the opening operation of the box pipe jacking
LIU Wei, YU Miao, WU Yinlong, SHI Peixin, WU Ben
School of Rail Transportation, Soochow University, Suzhou 215000, Jiangsu, China
下载:  PDF (4310KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为研究矩形顶管开舱施工过程中地层稳定性,以苏州地区某矩形隧道工程中开舱清障施工为背景,分析开舱过程中土舱内土体分布情况,基于此提出地层稳定的优化模型。考虑到工作面被部分支护,对传统筒仓模型进行改进,通过极限平衡分析得到极限支护压力。比较本研究模型和传统模型,结果表明:当工作面无支撑面积较小(空仓面积小于半个工作面,B/L<1/2)时,优化模型优于传统模型。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘维
俞淼
吴垠龙
史培新
吴奔
关键词:  矩形隧道  开挖面稳定  部分支护  分析模型  极限平衡分析    
Abstract: To study the stability of the ground during the opening of the rectangular jacking pipe, this paper presented a project of box tunnel in Suzhou, in which a particular case of obstruction clearance was involved. The distribution of the cuttings in the chamber was analyzed and the analytical model for ground stability was established accordingly. Considering the working face was partially supported, the current model was proposed by modifying the traditional silo-wedge model. The residual earth pressure supporting the working face was derived through limit equilibrium analysis. The comparison between the proposed model and traditional model was carried out for verification. The result indicated that the proposed model outperformed the traditional model on ground stability assessing when the width of unsupported area is one-half of the working surface(<i>B/L</i>&lt;1/2).
Key words:  box tunnel    face stability    partially supported    analytical model    limit equilibrium analysis
收稿日期:  2021-10-20      修回日期:  2022-01-05      发布日期:  2022-09-20     
中图分类号:  TU43  
  U455.47  
基金资助: 国家自然科学基金资助项目(51978430)
作者简介:  刘维(1985— ),男,湖北荆州人,博士,副教授,硕士生导师,主要研究方向为地下工程、盾构隧道工程. E-mail:ggoulmmeng@suda.edu.cn
引用本文:    
刘维, 俞淼, 吴垠龙, 史培新, 吴奔. 矩形顶管开舱施工过程中地层稳定性分析[J]. 隧道与地下工程灾害防治, 2022, 4(3): 92-98.
LIU Wei, YU Miao, WU Yinlong, SHI Peixin, WU Ben. Formation stability analysis during the opening operation of the box pipe jacking. Hazard Control in Tunnelling and Underground Engineering, 2022, 4(3): 92-98.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2022/V4/I3/92
[1] 彭立敏,王哲,叶艺超,等. 矩形顶管技术发展与研究现状[J]. 隧道建设,2015,35(1):1-8. PENG Limin, WANG Zhe, YE Yichao, et al. Technological development and research status of rectangular pipe jacking method[J]. Tunnel Construction, 2015, 35(1):1-8.
[2] 贾连辉. 矩形顶管在城市地下空间开发中的应用及前景[J]. 隧道建设, 2016, 36(10): 1269-1276. JIA Lianhui. Application of rectangular pipe jacking machine to urban underground space development and its prospects[J]. Tunnel Construction, 2016, 36(10): 1269-1276.
[3] 黎东辉,钟显奇. 矩形顶管工法在地下通道工程中的应用[J]. 广东土木与建筑, 2016,23(增刊1): 60-62. LI Donghui, ZHONG Xianqi. Application of rectangular pipe-jacking method in underground passage engineering[J]. Guangdong Architecture Civil Engineering, 2016, 23(Suppl.1): 60-62.
[4] 刘龙卫,薛发亭,刘常利. 三车道超大断面矩形顶管工程——嘉兴市下穿南湖大道隧道[J]. 隧道建设, 2021,41(9): 1612-1625. LIU Longwei, XUE Fating, LIU Changli. Three-lane super-large section rectangular pipe-jacking tunnel underpassing Nanhu avenue in Jiaxing, China [J]. Tunnel Construction, 2021, 41(9): 1612-1625.
[5] DAVIS E H, GUNN M J, MAIR R J, et al. The stability of shallow tunnels and underground openings in cohesive material[J]. Géotechnique, 1980, 30(4): 397-416.
[6] LECA E, DORMIEUX L. Upper and lower bound solutions for the face stability of shallow circular tunnels in frictional material[J]. Géotechniqe, 1990, 40(4): 581-606.
[7] MOLLON G, DIAS D, SOUBRA A H. Rotational failure mechanisms for the face stability analysis of tunnels driven by a pressurized shield[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2011, 35(12): 1363-1388.
[8] PAN Qiujing, DIAS D. Upper-bound analysis on the face stability of a non-circular tunnel[J]. Tunnelling and Underground Space Technology, 2017, 62: 96-102.
[9] LIU Wei, SHI Peixin, CHEN Lijian, et al. Analytical analysis of working face passive stability during shield tunneling in frictional soils[J]. Acta Geotechnica, 2020, 15(3):781-794.
[10] LIU Wei, WU Ben, SHI Peixin, et al. Upper bound analysis of working face passive failure in large-diameter shield tunneling based on a composite mechanism[J]. Computers and Geotechnics, 2021, 138: 104362.
[11] HORN N. Horizontaler Erddruck auf senkrechte abschlussflachen von tunnelrohren[C] // Landeskonferenz der Ungarischen Tiefbauindustrie:Budapest,1961.
[12] ANAGNOSTOU G, KOVÁRI K. The face stability of slurry-shield-driven tunnels[J]. Tunnelling and Underground Space Technology, 1994, 9(2): 165-174.
[13] ANAGNOSTOU G, KOVÁRI K. Face stability conditions with earth-pressure-balanced shields[J]. Tunnelling and Underground Space Technology, 1996, 11(2): 165-173.
[14] NGAN M V, BROERE W, BOSCH J. The impact of shallow cover on stability when tunnelling in soft soils[J]. Tunnelling and Underground Space Technology, 2015, 50: 507-515.
[15] 魏纲. 顶管工程土与结构的性状及理论研究[D]. 杭州: 浙江大学, 2005. WEI Gang. Theoretical study on properties of soil and structure during pipe jacking construction[D]. Hangzhou: Zhejiang University, 2005.
[16] 魏纲,贺峰. 砂性土中顶管开挖面最小支护压力的计算[J]. 地下空间与工程学报, 2007,3(5): 903-908. WEI Gang, HE Feng. Calculation of minimal support pressure acting on shield face during pipe jacking in sandy soil[J]. Chinese Journal of Underground Space and Engineering, 2007, 3(5): 903-908.
[17] 雷明锋,彭立敏,施成华,等. 迎坡条件下盾构隧道开挖面极限支护力计算与分析[J]. 岩土工程学报, 2010, 32(3): 488-492. LEI Mingfeng, PENG Limin, SHI Chenghua, et al. Calculation and analysis of limit support force of shield tunnel excavation face under facing-slope conditions[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(3): 488-492.
[18] 许有俊,梁玮真,刘忻梅,等. 大断面矩形顶管隧道开挖面土体稳定性研究[J]. 现代隧道技术, 2017,54(5): 70-77. XU Youjun, LIANG Weizhen, LIU Xinmei, et al. Soil mass stability at the working face of a rectangular pipe-jacking tunnel with a large section[J]. Modern Tunnelling Technology, 2017, 54(5): 70-77,85.
[19] 程诚,赵文,程超楠,等. 干砂盾构隧道开挖面主动极限支护压力计算[J]. 东北大学学报(自然科学版), 2018,39(9): 1348-1352. CHENG Cheng, ZHAO Wen, CHENG Chaonan, et al. Calculation on active limit support pressure of shield tunnel excavation face in dry cohesionless soil[J]. Journal of Northeastern University(Natural Science), 2018, 39(9): 1348-1352.
[20] CHAMBON P, CORTÉ J F. Shallow tunnels in cohesionless soil: stability of tunnel face[J]. Journal of Geotechnical Engineering, 1994, 120(7): 1148-1165.
[21] 陈仁朋,李君,陈云敏,等. 干砂盾构开挖面稳定性模型试验研究[J]. 岩土工程学报, 2011, 33(1): 117-122. CHEN Renpeng, LI Jun, CHEN Yunmin, et al. Large-scale tests on face stability of shield tunnelling in dry cohesionless soil[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(1): 117-122.
[22] CHEN Renpeng, LI Jun, KONG Linggang, et al. Experimental study on face instability of shield tunnel in sand[J]. Tunnelling and Underground Space Technology, 2013, 33: 12-21.
[23] NG C W W, WONG K S. Investigation of passive failure and deformation mechanisms due to tunnelling in clay[J]. Canadian Geotechnical Journal, 2013, 50(4): 359-372.
[24] LIU Wei, ZHAO Yu, SHI Peixin,et al. Face stability analysis of shield-driven tunnels shallowly buried in dry sand using 1-g large-scale model tests[J]. Acta Geotechnica, 2018, 13(3): 693-705.
[25] 高健,张义同,乔金丽. 渗透力对隧道开挖面稳定性影响分析[J]. 岩土工程学报, 2009, 31(10): 1547-1553. GAO Jian, ZHANG Yitong, QIAO Jinli. Face stability analysis of tunnels with consideration of seepage force[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(10): 1547-1553.
[26] 吕玺琳,李冯缔,黄茂松,等. 三维盾构隧道开挖面极限支护压力数值及理论解[J]. 同济大学学报(自然科学版), 2012,40(10): 1469-1473. LÜ Xilin, LI Fengdi, HUANG Maosong, et al. Three-dimensional numerical and analytical solutions of limit support pressure at shield tunnel face[J]. Journal of Tongji University(Natural Science), 2012, 40(10): 1469-1473.
[27] 陈仁朋,齐立志,汤旅军,等. 砂土地层盾构隧道开挖面被动破坏极限支护力研究[J]. 岩石力学与工程学报, 2013,32(增刊1): 2877-2882. CHEN Renpeng, QI Lizhi, TANG Lüjun, et al. Study of limit supporting force of excavation face's passive failure of shield tunnels in sand strata[J]. Chinese Journal of Rock Mechanics and Engineering, 2013,32(Suppl.1): 2877-2882.
[28] PERAZZELLI P, LEONE T, ANAGNOSTOU G. Tunnel face stability under seepage flow conditions[J]. Tunnelling and Underground Space Technology, 2014, 43: 459-469.
[1] 吕玺琳, 赵庾成, 曾盛. 砂层中盾构隧道开挖面稳定性物理模型试验[J]. 隧道与地下工程灾害防治, 2022, 4(3): 67-76.
[2] 石宗涛. 济南黄河隧道泥水盾构开挖面稳定性分析[J]. 隧道与地下工程灾害防治, 2022, 4(1): 71-77.
[3] 肖鹏飞,冯光福,贾少东,孟庆军,王树英,刘奥林. 近距离下穿车站富水圆砾地层盾构隧道开挖面稳定性研究[J]. 隧道与地下工程灾害防治, 2021, 3(1): 75-81.
[1] QIAN Qihu. Scientific use of the urban underground space to construction the harmonious livable and beautiful city[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 1 -7 .
[2] DENG Mingjiang, LIU Bin. Challenges, countermeasures and development direction of geological forward-prospecting for TBM cluster tunneling in super-long tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 8 -19 .
[3] DING Xiuli, ZHANG Yuting, ZHANG Chuanjian, YAN Tianyou, HUANG Shuling. Review on countermeasures and their adaptability evaluation to tunnels crossing active faults[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 20 -35 .
[4] JIAO Yuyong, ZHANG Weishe, OU Guangzhao, ZOU Junpeng, CHEN Guanghui. Review of the evolution and mitigation of the water-inrush disaster in drilling-and-blasting excavated deep-buried tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 36 -46 .
[5] ZHANG Qingsong, ZHANG Lianzhen, LI Peng, FENG Xiao. New progress in grouting reinforcement theory of water-rich soft stratum in underground engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 47 -57 .
[6] XIA Kaiwen, XU Ying, CHEN Rong. Dynamic tests of rocks subjected to simulated deep underground environments[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 58 -75 .
[7] HONG Kairong. Study on rock breaking and wear of TBM hob in high-strength high-abrasion stratum[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 76 -85 .
[8] TAN Zhongsheng. Application experimental study of high-strength lattice girders with heat treatment in tunnel engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 86 -92 .
[9] CHEN Jianxun, LUO Yanbin. The stability of structure and its control technology for lager-span loess tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 93 -101 .
[10] JING Hongwen, YU Liyuan, SU Haijian, GU Jincai, YIN Qian. Development and application of catastrophic experiment system for water inrush in surrounding rock of deep tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 102 -110 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn