Please wait a minute...
 
隧道与地下工程灾害防治
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
考虑内部结构的大直径盾构隧道抗震性能
王伟1,刘英1,庄海洋1, 2*,赵凯1,陈国兴1
(1. 南京工业大学岩土工程研究所,江苏 南京 211816;2. 华东交通大学土木建筑学院,江西 南昌 330013)
Seismic performance of large shield tunnel considering internal structure
WANG Wei1, LIU Ying1, ZHUANG Haiyang1, 2*, ZHAO Kai1, CHEN Guoxing1
(1. Institute of Geotechnical Engineering, Nanjing Tech University, Nanjing 211816, China; 2. School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang 330013, China)
下载: 
输出:  BibTeX | EndNote (RIS)      
摘要 以GIL过江盾构隧道综合管廊为例,通过建立有、无形支架结构的非线性土-隧道结构静、动力耦合三维有限元分析模型,研究形支架结构对考虑错缝拼装的盾构隧道整体抗震性能的影响。结果表明:放入形支架结构后,隧道底部的管片张开量减小显著,减小量达60%;大震下封顶块附近的管片张开量有增大趋势。输入地震动峰值较小时,隧道顶底及形支架结构-隧道连接处的加速度反应谱变化不大;随着输入地震动峰值的增大,反应谱短周期内波动变大,反应谱值整体下降。整体来看,隧道结构顶部管片混凝土受拉损伤加重,底部受拉损伤相对较轻,受拉损伤主要分布在管片接缝处及其附近区域,在大直径盾构隧道抗震设计时有必要考虑隧道-形支架结构动力相互作用的影响。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王伟
刘英
庄海洋
赵凯
陈国兴
关键词:  盾构隧道  形支架结构  抗震性能  数值模拟  地震破坏    
Abstract: Taking the GIL shield tunnel integrated corridor as an example, the non-linear soil-tunnel structure with and without the π-shaped bracket structure was established as a three-dimensional finite element analysis model for static and dynamic coupling, and the effect of the π-shaped bracket structure on the overall seismic performance of the shield tunnel considering staggered assembly was investigated. The results showed that the tube sheet tension at the bottom of the tunnel was significantly reduced by up to 60% after the π-shaped bracket structure was placed, and the tube sheet tension near the capping block tended to increase under large earthquakes. The acceleration response spectra at the top and bottom of the tunnel and at the π-frame structure-tunnel connection do not change significantly when the input ground shaking peak was small; as the input ground shaking peak increases, the response spectra fluctuate significantly within short periods and the overall response spectra values decrease. On the whole, the tensile damage to the concrete at the top of the tunnel structure was aggravated, while the tensile damage at the bottom was relatively light, and the tensile damage was mainly distributed at and around the tube joints. It was necessary to consider the effect of the tunnel-π-shaped support structure dynamic interaction in the seismic design of large diameter shield tunnels.
Key words:  shield tunnel    shaped support structure    seismic performance    numerical analysis    earthquake damage
收稿日期:  2022-07-05      修回日期:  2022-11-07      发布日期:  2023-01-05     
中图分类号:  TU4  
基金资助: 国家自然科学基金面上资助项目(51978333)
通讯作者:  庄海洋(1978—),男,江苏宿迁人,教授,博士生导师,主要研究方向为岩土地震工程与地下结构防震减灾研究。     E-mail:  zhuang7802@163.com
作者简介:  王伟(1997—),男,江苏泰州人,硕士研究生,主要研究方向为岩土工程地震研究。 E-mail: 1320986488@qq.com
引用本文:    
王伟, 刘英, 庄海洋, 赵凯, 陈国兴. 考虑内部结构的大直径盾构隧道抗震性能[J]. 隧道与地下工程灾害防治, .
WANG Wei, LIU Ying, ZHUANG Haiyang, ZHAO Kai, CHEN Guoxing. Seismic performance of large shield tunnel considering internal structure. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1-8.
链接本文:  
[1] 孙港, 王军祥, 孟祥竹, 郭连军, 孙杰. 基于近场动力学理论的岩石双孔爆破动态断裂行为数值模拟[J]. 隧道与地下工程灾害防治, 2023, 5(2): 42-58.
[2] 魏纲, 徐天宝, 张治国. 复杂应力路径下波纹钢加固盾构隧道数值分析[J]. 隧道与地下工程灾害防治, 2023, 5(2): 24-32.
[3] 黄兴,张炜,殷建钢,施皓,张晓磊. 填埋场扩建后下穿隧道结构的安全性[J]. 隧道与地下工程灾害防治, 2023, 5(1): 55-63.
[4] 党晓宇,马劲松. 基于桩板组合结构等代仰拱的公路隧道加固方案[J]. 隧道与地下工程灾害防治, 2023, 5(1): 90-96.
[5] 赵兴东,窦翔,李勇,王立君. 基于Ventsim的地下水封洞库建造期通风方式优选[J]. 隧道与地下工程灾害防治, 2023, 5(1): 8-17.
[6] 王智,刘祥勇,朱先发,洪小星,沈一鸣,张冰利. 小曲率半径隧道施工对盾构管片结构影响[J]. 隧道与地下工程灾害防治, 2023, 5(1): 45-54.
[7] 韩兴博,陈子明,苏恩杰,梁晓明,宋桂峰,叶飞. 盾构隧道围岩压力分布规律及作用模式[J]. 隧道与地下工程灾害防治, 2022, 4(4): 34-43.
[8] 喻伟,林赞权,朱彬彬,汪元冶,丁文其,乔亚飞,张晓东,龚琛杰. 盾构隧道防水密封垫材料的高温老化后性能[J]. 隧道与地下工程灾害防治, 2022, 4(4): 52-58.
[9] 关振长,周宇轩,吕春波,吕荔炫. 空气间隔装药周边眼爆破精细化数值模拟[J]. 隧道与地下工程灾害防治, 2022, 4(4): 11-19.
[10] 张治国,程志翔,陈杰,吴钟腾,李云正. 盾构隧道接缝渗漏水诱发既有管线变形模型试验[J]. 隧道与地下工程灾害防治, 2022, 4(3): 77-91.
[11] 刘祥勇,张鑫,王军,赵涛宁,朱先发. 盾构施工对邻近建筑物群结构影响评价[J]. 隧道与地下工程灾害防治, 2022, 4(3): 99-106.
[12] 赵辰洋,罗毛毛,邱静怡,倪芃芃,赵锋烽. 盾构隧道施工引起地层变形预测方法综述[J]. 隧道与地下工程灾害防治, 2022, 4(3): 31-46.
[13] 丁智,李鑫家,张霄. 基于机器学习的盾构掘进地表变形预测研究与展望[J]. 隧道与地下工程灾害防治, 2022, 4(3): 1-9.
[14] 吕玺琳,赵庾成,曾盛. 砂层中盾构隧道开挖面稳定性物理模型试验[J]. 隧道与地下工程灾害防治, 2022, 4(3): 67-76.
[15] 潘秋景,李晓宙,黄杉,汪来,王树英,方国光. 机器学习在盾构隧道智能施工中的应用——综述与展望[J]. 隧道与地下工程灾害防治, 2022, 4(3): 10-30.
[1] QIAN Qihu. Scientific use of the urban underground space to construction the harmonious livable and beautiful city[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 1 -7 .
[2] WANG Zhechao, LI Wei, LIU Jie, GUO Jiafan, ZHANG Yupeng. A review on state-of-the-art of underground gas storage and causes of typical accidents[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -10 .
[3] LIU Ning, ZHANG Chunsheng, ZHANG Chuanqing, CHU Weijiang, CHEN Pingzhi, . Analysis on lining structure safety of large hydraulic tunnel in deep-buried soft rock[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -8 .
[4] GONG Qiuming, WU Fan, YIN Lijun. Study on the rock mixed ground under disc cutter by linear cutting tests[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -11 .
[5] YAN Baoxu, ZHU Wancheng, HOU Chen. Theoretical analysis of maximum exposure height of the backfill when mining underground adjacent stope[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -11 .
[6] FU Helin, HUANG Zhen, WANG Hui, ZHANG Jiabing, SHI Yue. Accident analysis and management of metro safety[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -12 .
[7] JIAO Yuyong, ZHANG Weishe, OU Guangzhao, ZOU Junpeng, CHEN Guanghui. Review of the evolution and mitigation of the water-inrush disaster in drilling-and-blasting excavated deep-buried tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 36 -46 .
[8] HONG Kairong. Study on rock breaking and wear of tbm hob in high-strength high-abrasion stratum[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 76 -85 .
[9] JING Hongwen, YU Liyuan, SU Haijian, GU jincai, Yin Qian. Development and application of catastrophic experiment system for water inrush in surrounding rock of deep tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 102 -110 .
[10] DING Xiuli, ZHANG Yuting, YAN Tianyou, HUANG Shuling. Review on countermeasures and their adaptability evaluation to tunnels crossing active faults[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 20 -35 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn