Please wait a minute...
 
隧道与地下工程灾害防治  2023, Vol. 5 Issue (2): 42-58    DOI: 10.19952/j.cnki.2096-5052.2023.02.04
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
基于近场动力学理论的岩石双孔爆破动态断裂行为数值模拟
孙港1,王军祥1*,孟祥竹2,3,郭连军1,孙杰1
1.沈阳工业大学建筑与土木工程学院, 辽宁 沈阳 110870;2.辽宁省桥梁安全工程专业技术创新中心, 辽宁 沈阳 110122;3.辽宁省交通高等专科学校道路与桥梁工程系, 辽宁 沈阳 110122
Numerical simulation of dynamic fracture behavior of rock dual-hole blasting based on peridynamic theory
SUN Gang1, WANG Junxiang1*, MENG Xiangzhu2,3, GUO Lianjun1, SUN Jie1
1. School of Architecture and Civil Engineering, Shenyang University of Technology, Shenyang 110870, Liaoning, China;
2. Bridge Safety Engineering Innovation Center of Liaoning Province, Shenyang 110122, Liaoning, China;
3. Department of Road and Bridge Engineering, Liaoning Provincial College of Communications, Shenyang 110122, Liaoning, China
下载:  PDF (17421KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用一种新型的无网格化方法——近场动力学理论,在微观弹脆性本构模型(prototype microelastic brittle, PMB)基础上,引入可反映长程力作用强度随物质点间距变化的核函数,通过Fortran语言编写高地应力状态下岩石双孔爆破的数值求解程序,研究不同炮孔间距、不同地应力状态和不同侧压力系数下岩石双孔爆破动态破坏过程,获得岩石双孔爆破时裂纹萌发、扩展、贯通的全过程。结果表明:随着炮孔间距从100 mm增加至200 mm,开裂区面积由306.59 cm2增大至449.07 cm2,但当炮孔间距增加至200 mm时,双孔之间产生的裂纹不能连接贯通;在静水地应力水平下,随着地应力的增加,裂纹扩展时间减少,损伤起始时间滞后,损伤面积由123.24 cm2减小至32.96 cm2,主裂纹扩展长度由87.73 mm减小至14.42 mm;非静水地应力水平下,爆生裂纹扩展倾向于最大主应力方向,随着侧压力系数增加、损伤面积减小,裂纹扩展的方向性越明显。地应力对岩石爆破开裂起抑制作用,非静水地应力水平对裂纹的扩展具有导向作用。在实际爆破开挖中,选择合适的炮孔间距,沿最大主应力方向布置炮孔有利于形成良好的爆破开挖面,提高破岩效率。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙港
王军祥
孟祥竹
郭连军
孙杰
关键词:  双孔爆破  地应力  近场动力学  数值模拟  裂纹扩展    
Abstract: Peridynamics theory is a new meshless method. Based on the microelastic brittle model inperidynamics, a kernel function that can reflect the internal length effect of the long-range forces varies with the distance between material points is introduced. The numerical solution program of dual-borehole rock blasting under high in-situ stress state was written by Fortran language to investigate the dynamic deformation and failure process of dual-borehole rock blasting under different borehole distance, in-situ stress states and lateral pressure coefficients, and the whole process of crack initiation, propagation and coalescence in dual-borehole rock blasting was obtained. The results showed that the crack area enlarges from 306.59 cm2 to 449.07 cm2 with the increase of the borehole spacing from 100 mm to 200 mm, whereas the borehole spacing rised to 200 mm, the cracks was unable to throughout which was produced by dual-borehole. At the hydrostatic in-situ stress levels, with the increase of in-situ stress, the crack propagation time reduced, the initial time of rock failure postponed, the damage area reduced from 123.24 cm2 to 32.96 cm2, and the main crack propagation length decreased from 87.73 mm to 14.42 mm. Under non-hydrostatic in-situ stress, the crack propagation tended to the direction of maximum principal stress. With the increase of lateral pressure coefficient, the damage area diminished and the directivity of crack propagation became increasingly apparent.The in-situ stress inhibited the crack propagation of rock, and the non-hydrostatic in-situ stress exerted a guiding effect on the crack propagation. In reality, the efficiency of rock fragmentation will be improved through selecting proper borehole distance and arranging the blasting holes along the direction of maximum principal stress which are beneficial to forming a new free surface.
Key words:  dual-borehole blasting    in-situ stress    peridynamic    numerical simulation    crack propagation
收稿日期:  2023-03-01      修回日期:  2023-04-10      发布日期:  2023-06-20     
中图分类号:  TD235  
基金资助: 国家自然科学基金资助项目(51974187);辽宁省自然科学基金资助项目(2019-MS-242);辽宁省教育厅重点攻关资助项目(LZGD2020004);辽宁省桥梁安全工程专业技术创新中心2021年度开放基金资助项目(2021-13)
作者简介:  孙港(1997— ),男,山西大同人,博士研究生,主要研究方向为岩石冲击与爆破. E-mail:sg19970416@163.com. *通信作者简介:王军祥(1985— ),男,吉林敦化人,博士,副教授,博士生导师,主要研究方向为岩石力学与地下工程. E-mail: w.j.xgood@163.com
引用本文:    
孙港, 王军祥, 孟祥竹, 郭连军, 孙杰. 基于近场动力学理论的岩石双孔爆破动态断裂行为数值模拟[J]. 隧道与地下工程灾害防治, 2023, 5(2): 42-58.
SUN Gang, WANG Junxiang, MENG Xiangzhu, GUO Lianjun, SUN Jie. Numerical simulation of dynamic fracture behavior of rock dual-hole blasting based on peridynamic theory. Hazard Control in Tunnelling and Underground Engineering, 2023, 5(2): 42-58.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2023/V5/I2/42
[1] LIANG Z Z, QIAN X K, ZHANG Y, et al. Numerical simulation of dynamic fracture properties of rocks under different static stress conditions[J]. Journal of Central South University, 2022, 29(2):624-644.
[2] MA G W, AN X M. Numerical simulation of blasting-induced rock fractures[J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(6):966-975.
[3] 李清,徐文龙,郭洋,等. 单向静压下柱状炮孔端部爆生裂纹的扩展规律[J]. 振动与冲击, 2020, 39(13):91-96. LI Qing, XU Wenlong, GUO Yang, et al. Propagation law of blasting crack at end of cylinder blasthole under uniaxial static pressure[J]. Journal of Vibration and Shock, 2020, 39(13):91-96.
[4] 杨立云,马佳辉,王学东,等. 压应力场中爆生裂纹分布与扩展特征实验分析[J]. 爆炸与冲击,2017,37(2):262-268. YANG Liyun, MA Jiahui, WANG Xuedong, et al. Experimental study on blasting crack initiation and propagation behavior in compression stress field[J]. Explosion and Shock Waves, 2017, 37(2):262-268.
[5] 张凤鹏,闫广亮,郝琪琪,等. 单向压应力对砂岩漏斗爆破过程的影响[J]. 东北大学学报(自然科学版), 2021, 42(2):220-225. ZHANG Fengpeng, YAN Guangliang, HAO Qiqi, et al. Influence of unidirectional compressive stress on the crater blasting of sandstone[J]. Journal of Northeastern University(Natural Science), 2021, 42(2):220-225.
[6] 葛进进. 初始应力状态下岩石爆破裂纹扩展的模型试验研究[D]. 淮南:安徽理工大学,2020. GE Jinjin. Model test study on crack propagation in rock blasting under initial stress state[D]. Huainan: Anhui University of Science & Technology, 2020.
[7] YI C P, JOHANSSON D, GREBERG J. Effects of in-situ stresses on the fracturing of rock by blasting[J]. Computers and Geotechnics, 2018, 104:321-330.
[8] 李祥龙,张松涛,李明扬,等. 基于AUTODYN的岩石中爆炸鼓包运动模拟[J]. 煤炭学报, 2016, 41(增刊2):419-424. LI Xianglong, ZHANG Songtao, LI Mingyang, et al. Simulation research of AUTODYN-based bulging motion of rock blast[J]. Journal of China Coal Society, 2016, 41(Suppl.2):419-424.
[9] 李云,刘霁. 岩石中浅孔爆破特性的数值模拟[J]. 中南大学学报(自然科学版), 2012, 43(4):1519-1522. LI Yun, LIU Ji. Numerical simulation on mechanical properties of shallow-hole blasting in rocks[J]. Journal of Central South University(Science and Technology), 2012, 43(4):1519-1522.
[10] 梁洪达,郭鹏飞,孙鼎杰,等. 不同聚能爆破模式应力波传播及裂纹扩展规律研究[J]. 振动与冲击,2020,39(4):157-164. LIANG Hongda, GUO Pengfei, SUN Dingjie, et al. A study on crack propagation and stress wave propagation in different blasting modes of shaped energy blasting[J]. Journal of Vibration and Shock, 2020, 39(4):157-164.
[11] HAJIBAGHERPOUR A R, MANSOURI H, BAHAADDINI M. Numerical modeling of the fractured zones around a blasthole [J]. Computers and Geotechnics, 2020, 123:1-8.
[12] 甯尤军,杨军,陈鹏万. 节理岩体爆破的DDA方法模拟[J]. 岩土力学, 2010, 31(7):2259-2263. NING Youjun, YANG Jun, CHEN Pengwan. Numerical simulation of rock blasting in jointed rock mass by DDA method[J]. Rock and Soil Mechanics, 2010, 31(7):2259-2263.
[13] GHAREHDASH S, BARZEGAR M, PALYMSKIY I B, et al. Blast induced fracture modelling using smoothed particle hydrodynamics[J]. International Journal of Impact Engineering, 2020, 135(1):222-231.
[14] XU L, SCHREYER H, SULSKY D. Blast-induced rock fracture near a tunnel[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2015, 39(1):23-50.
[15] YANG J H, WU Z N, SUN W B, et al. Numerical simulation on radiation and energy of blast-induced seismic waves in deep rock masses[J]. Journal of Central South University, 2022, 29(2):645-662.
[16] 杨建华,孙文彬,姚池,等. 高地应力岩体多孔爆破破岩机制[J]. 爆炸与冲击, 2020, 40(7):118-127. YANG Jianhua, SUN Wenbin, YAO Chi, et al. Mechanism of rock fragmentation by multi-hole blasting in highly-stressed rock masses[J]. Explosion and Shock Waves, 2020, 40(7):118-127.
[17] 杨建华,吴泽南,姚池,等. 地应力对岩石爆破开裂及爆炸地震波的影响研究[J]. 振动与冲击, 2020, 39(13):64-70. YANG Jianhua, WU Zenan, YAO Chi, et al. Influences of in-situ stress on blast-induced rock fracture and seismic waves[J]. Journal of Vibration and Shock, 2020, 40(7):64-70.
[18] SILLING S A. Reformulation of elasticity theory for discontinuities and long-range forces[J]. Journal of the Mechanics and Physics of Solids, 2000, 48(1):175-209.
[19] PANCHADHARA R, GORDON P A, PARKS M L. Modeling propellant-based stimulation of a borehole with peridynamics [J]. International Journal of Rock Mechanics and Mining Sciences, 2017, 93(C):330-343.
[20] ZHU F, ZHAO J D. Peridynamic modelling of blasting induced rock fractures[J]. Journal of the Mechanics and Physics of Solids, 2021, 153:1-24.
[21] ZHANG Y N, DENG J R, DENG H W, et al. Peridynamics simulation of rock fracturing under liquid carbon dioxide blasting [J]. International Journal of Damage Mechanics, 2018, 28(7):1038-1052.
[22] AI D H, ZHAO Y C, WANG Q F, et al. Experimental and numerical investigation of crack propagation and dynamic properties of rock in SHPB indirect tension test[J]. International Journal of Impact Engineering, 2019, 126:135-146.
[23] SILLING S A, ASKARI E. A meshfree method based on the peridynamic model of solid mechanics [J]. Computers and Structures, 2005, 83(17/18):1526-1535.
[24] GERSTLE W, SAU N, SILLING S. Peridynamic modeling of concrete structures [J]. Nuclear Engineering and Design, 2007, 237(12/13):1250-1258.
[25] HUANG D, LU G D, WANG C W, et al. An extended peridynamic approach for deformation and fracture analysis [J]. Engineering Fracture Mechanics, 2015, 141:196-211.
[26] 秦洪远,黄丹,刘一鸣,等. 基于改进型近场动力学方法的多裂纹扩展分析[J]. 工程力学, 2017, 34(12):31-38. QIN Hongyuan, HUANG Dan, LIU Yiming, et al. An extended peridynamic approach for analysis of multiple crack growth [J]. Engineering Mechanics, 2017, 34(12):31-38.
[27] KILIC B, MADENCI E. An adaptive dynamic relaxation method for quasi-static simulations using the peridynamic theory [J]. Theoretical and Applied Fracture Mechanics, 2010, 53(3):194-204.
[28] OAKLEY D R, KNIGHT N F. Adaptive dynamic relaxation algorithm for non-linear hyperelastic structures Part I. formulation[J].Computer Methods in Applied Mechanics and Engineering, 1995, 126(1/2):67-89.
[29] MADENCI E, OTERKUS E. Peridynamic theory and its applications[M]. New York, US: Springer, 2014.
[30] 杨鑫,蒲传金,肖定军,等. 不同方位裂隙对爆炸裂纹扩展的影响[J].实验力学, 2014,29(6):751-759. YANG Xin, PU Chuanjin, XIAO Dingjun, et al. On the effect of cracks with different orientation on the propagation of blast-induced cracks [J]. Journal of Experimental Mechanics, 2014, 29(6):751-759.
[31] 王剑锋,钱松荣,石宏顺. 近场动力学理论在脆性材料波散射与裂纹扩展问题的数值模拟 [J]. 科学技术与工程, 2019, 19(11):1-9. WANG Jianfeng, QIAN Songrong, SHI Hongshun. Numerical simulation of wave scattering and crack propagation of brittle materials based on peridynamic theory[J]. Science Technology and Engineering, 2019, 19(11):1-9.
[32] ZHANG Y N, DENG H W, KE B, et al. Research on the explosion effects and fracturing mechanism of liquid carbon dioxide blasting[J]. Mining, Metallurgy & Exploration, 2022, 39(2):521-530.
[1] 党晓宇,马劲松. 基于桩板组合结构等代仰拱的公路隧道加固方案[J]. 隧道与地下工程灾害防治, 2023, 5(1): 90-96.
[2] 赵兴东,窦翔,李勇,王立君. 基于Ventsim的地下水封洞库建造期通风方式优选[J]. 隧道与地下工程灾害防治, 2023, 5(1): 8-17.
[3] 黄兴,张炜,殷建钢,施皓,张晓磊. 填埋场扩建后下穿隧道结构的安全性[J]. 隧道与地下工程灾害防治, 2023, 5(1): 55-63.
[4] 关振长,周宇轩,吕春波,吕荔炫. 空气间隔装药周边眼爆破精细化数值模拟[J]. 隧道与地下工程灾害防治, 2022, 4(4): 11-19.
[5] 黄昕,谷冠思,张子新,李昀. 考虑渗流的泥水平衡盾构隧道稳定性数值模拟[J]. 隧道与地下工程灾害防治, 2022, 4(2): 28-38.
[6] 李相兵,梁波,鲁思源. 考虑多因素影响的双侧壁导坑法施工参数研究[J]. 隧道与地下工程灾害防治, 2022, 4(2): 39-48.
[7] 石宗涛. 济南黄河隧道泥水盾构开挖面稳定性分析[J]. 隧道与地下工程灾害防治, 2022, 4(1): 71-77.
[8] 李钊,梁庆国,孙文,曹小平. 隧道台阶法施工上台阶长度对隧道变形的影响[J]. 隧道与地下工程灾害防治, 2022, 4(1): 55-62.
[9] 曹成威,石钰锋,徐长节,侯世磊,龚宏华,纪松岩. 某明挖深基坑地下连续墙非对称配筋优化设计[J]. 隧道与地下工程灾害防治, 2022, 4(1): 63-70.
[10] 房倩,杜建明,王赶,杨晓旭. 模型边界对圆形隧道开挖引起地表沉降的影响分析[J]. 隧道与地下工程灾害防治, 2022, 4(1): 10-17.
[11] 夏英杰, 孟庆坤, 唐春安, 张永彬, 赵丹晨, 赵振兴. 岩石破裂过程分析方法在隧道工程模拟中的应用[J]. 隧道与地下工程灾害防治, 2021, 3(3): 36-49.
[12] 崔昊, 闫自海, 胡建华, 郑宏. 基于RKPM-PD方法的岩石裂纹扩展数值模拟[J]. 隧道与地下工程灾害防治, 2021, 3(3): 59-75.
[13] 黄笑, 肖培伟, 董林鹭, 杨兴国, 徐奴文. 高地应力地下洞室群开挖过程岩体力学响应及破坏机制[J]. 隧道与地下工程灾害防治, 2021, 3(3): 85-93.
[14] 张鸿勇, 张艳杰, 刘春, 施斌, 曹政. 基于离散元孔隙密度流法的地铁隧道收敛变形注浆整治分析[J]. 隧道与地下工程灾害防治, 2021, 3(3): 100-110.
[15] 赵高峰,徐志超,郝益民,扈晓冬,邓稀肥. 基于4D-LSM的隧道围岩爆破振动和损伤判定研究[J]. 隧道与地下工程灾害防治, 2021, 3(3): 11-19.
[1] QIAN Qihu. Scientific use of the urban underground space to construction the harmonious livable and beautiful city[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 1 -7 .
[2] WANG Zhechao, LI Wei, LIU Jie, GUO Jiafan, ZHANG Yupeng. A review on state-of-the-art of underground gas storage and causes of typical accidents[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -10 .
[3] GONG Qiuming, WU Fan, YIN Lijun. Study on the rock mixed ground under disc cutter by linear cutting tests[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -11 .
[4] FU Helin, HUANG Zhen, WANG Hui, ZHANG Jiabing, SHI Yue. Accident analysis and management of metro safety[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -12 .
[5] HONG Kairong. Study on rock breaking and wear of tbm hob in high-strength high-abrasion stratum[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 76 -85 .
[6] JING Hongwen, YU Liyuan, SU Haijian, GU jincai, Yin Qian. Development and application of catastrophic experiment system for water inrush in surrounding rock of deep tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 102 -110 .
[7] WANG Mingnian, YU Li, LI Qi, WANG Xu, . A summary of research on disaster prevention, evacuation and evacuation in high-speed railway tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -12 .
[8] TIAN Siming, ZHAO Yong, SHI Shaoshuai, HU Jie. The status, problems and countermeasures of typical disaster prevention and control methods during the construction period of Chinese railway tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -29 .
[9] XIA Kaiwen, XU Ying, CHEN Rong. Dynamic tests of rocks subjected to simulated deep underground environments[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 58 -75 .
[10] TAN Zhongsheng. Application experimental study of high-strength lattice girders with heat treatment in tunnel engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 86 -92 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn