Please wait a minute...
 
隧道与地下工程灾害防治  2023, Vol. 5 Issue (1): 45-54    DOI: 10.19952/j.cnki.2096-5052.2023.01.05
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
小曲率半径隧道施工对盾构管片结构影响
王智1,刘祥勇1,朱先发1,洪小星1,沈一鸣2,张冰利2
(1.南通城市轨道交通有限公司, 江苏 南通 226007;2.同济大学土木工程学院地下建筑与工程系, 上海 200092
Influence of small curvature radius tunnel construction on shield segment structure
WANG Zhi1, LIU Xiangyong1, ZHU Xianfa1, HONG Xiaoxing1, SHEN Yiming2, ZHANG Bingli2
(1. Nantong Urban Rail Transit Co., Ltd., Nantong 226007, Jiangsu, China;2. Department of Geotechnical Engineering, College of Civil Engineering, Tongji University, Shanghai 200092, China
下载:  PDF (11810KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为研究小曲率半径盾构隧道盾构管片结构破损机理,基于实际工程案例,建立考虑纵缝接头以及环间接头的精细化衬砌管片模型,揭示小曲率半径盾构隧道施工阶段的管片破损机理。结果表明:小曲率半径盾构隧道在转弯段施工时,管片轴力、剪力、正弯矩和米塞斯(Mises)应力均在内外侧拱腰处取得峰值;拱腰位置管片在掘进过程中更容易发生破损;千斤顶推力纠偏角度增加时,隧道整体向外侧偏移;盾构隧道腰部外侧受到的影响更为明显,外侧拱腰的偏移量显著大于内侧拱腰。数值模拟和现场观测到的管片破损状况一致,可为实际工程提供借鉴。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王智
刘祥勇
朱先发
洪小星
沈一鸣
张冰利
关键词:  小曲率半径  盾构隧道  管片破损  转弯段施工    
Abstract: In order to study the damage mechanism of shield segment structure of shield tunnel with small curvature radius, based on practical engineering cases, a fine lining segment model considering segment joints and inter-ring joints was established to reveal the segment damage mechanism in the construction stage of shield tunnels with small curvature radius. The results showed that the axial force, shear force, positive bending moment and Mises stress of the segment all peaked at the inner and outer arch waists when the shield tunnel with small curvature radius was constructed in the turning section. The arch waist position of segments were more likely to be damaged during the excavation process. When the rectification angle of the jack thrust increased, the overall tunnel deviated to the outside. The outer side of the shield tunnel waist was more obviously affected, since the offset of outer arch waist was significantly larger than that of inner arch waist. The numerical simulation was consistent with the field observation of segment damage, which could provide reference for practical engineering.
Key words:  small curvature radius    shield tunnel    segment breakage    construction of turning section
收稿日期:  2022-07-05      修回日期:  2022-11-14      发布日期:  2023-03-20     
中图分类号:  U451  
作者简介:  王智(1970— ),男,江苏南通人,硕士,高级工程师,主要研究方向为工程建设、管理和运营. E-mail:wznt2008@163.com
引用本文:    
王智, 刘祥勇, 朱先发, 洪小星, 沈一鸣, 张冰利. 小曲率半径隧道施工对盾构管片结构影响[J]. 隧道与地下工程灾害防治, 2023, 5(1): 45-54.
WANG Zhi, LIU Xiangyong, ZHU Xianfa, HONG Xiaoxing, SHEN Yiming, ZHANG Bingli. Influence of small curvature radius tunnel construction on shield segment structure. Hazard Control in Tunnelling and Underground Engineering, 2023, 5(1): 45-54.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2023/V5/I1/45
[1] 赵运臣. 盾构隧道曲线段管片破损原因分析[J]. 西部探矿工程, 2002, 14(3): 73-74. ZHAO Yunchen. Damage analysis of curved segment of shield tunnel[J]. West-China Exploration Engineering, 2002, 14(3): 73-74.
[2] 安斌, 刘学霸, 杨春勃, 等. 富水砂层土压平衡盾构小半径曲线始发掘进参数控制研究[J]. 隧道建设(中英文), 2020, 40(增刊2): 289-296. AN Bin, LIU Xueba, YANG Chunbo, et al. Study on tunneling parameters control for EPB shield launching along a small-radius curve in water-rich sandy stratum[J]. Tunnel Construction, 2020, 40(Suppl.2): 289-296.
[3] 杨圆, 王春松. 主动铰接盾构在连续小半径曲线中风化泥岩的掘进控制技术[J]. 隧道建设(中英文), 2017, 37(增刊1): 189-193. YANG Yuan, WANG Chunsong. Driving control technology for active articulated shield machine in moderately weathered mudstone in continuous small radius curve[J]. Tunnel Construction, 2017, 37(Suppl.1): 189-193.
[4] 潘泓, 苏文渊, 翟国林, 等. 小曲率半径转弯隧道盾构施工扰动实测分析[J]. 岩石力学与工程学报, 2017, 36(4): 1024-1031. PAN Hong, SU Wenyuan, ZHAI Guolin, et al. Soil disturbance induced by shield advancing through a small radius path[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(4): 1024-1031.
[5] ALSAHLY A, STASCHEIT J, MESCHKE G. Advanced finite element modeling of excavation and advancement processes in mechanized tunneling[J]. Advances in Engineering Software, 2016, 100: 198-214.
[6] SHEN X, YUAN D J, JIN D L. Influence of shield attitude change on shield-soil interaction[J]. Applied Sciences, 2019, 9(9): 1812.
[7] 李强, 曾德顺. 盾构千斤顶推力变化对地面变形的影响[J]. 特种结构, 2002, 19(4): 45-48. LI Qiang, ZENG Deshun. The influence on the deformation of the ground surface when changing the shield force[J]. Special Structures, 2002, 19(4): 45-48.
[8] SUGIMOTO M, SRAMOON A, KONISHI S, et al. Simulation of shield tunneling behavior along a curved alignment in a multilayered ground[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(6): 684-694.
[9] ALSAHLY A, STASCHEIT J, MESCHKE G. Advanced finite element modeling of excavation and advancement processes in mechanized tunneling[J]. Advances in Engineering Software, 2016, 100: 198-214.
[10] ZHANG M J, LI S H, LI P F. Numerical analysis of ground displacement and segmental stress and influence of yaw excavation loadings for a curved shield tunnel[J]. Computers and Geotechnics, 2020, 118: 103325.
[11] 何川, 曾东洋. 砂性地层中地铁盾构隧道管片结构受力特征研究[J]. 岩土力学, 2007, 28(5): 909-914. HE Chuan, ZENG Dongyang. Research on mechanical characteristics of metro shield tunnel segment in sandy strata[J]. Rock and Soil Mechanics, 2007, 28(5): 909-914.
[12] 石少刚. 施工荷载下盾构隧道管片力学响应分析[D]. 哈尔滨: 哈尔滨工业大学, 2014. SHI Shaogang. Study on mechanical response of shield tunnel segment under construction loads[D]. Harbin: Harbin Institute of Technology, 2014.
[13] 苏文渊. 小曲率半径转弯段盾构施工隧道特性研究[D]. 广州: 华南理工大学, 2014. SU Wenyuan. Study on the characteristics of shield tunnel turning segment with small curvature radius[D]. Guangzhou: South China University of Technology, 2014.
[14] 张晓艳. 盾构隧道施工对地层位移及管片受力的影响分析[D]. 武汉: 华中科技大学, 2018. ZHANG Xiaoyan. The analysis of ground deformation and segment lining mechanical behavior during shield tunneling construction[D]. Wuhan: Huazhong University of Science and Technology, 2018.
[1] 魏纲, 徐天宝, 张治国. 复杂应力路径下波纹钢加固盾构隧道数值分析[J]. 隧道与地下工程灾害防治, 2023, 5(2): 24-32.
[2] 韩兴博,陈子明,苏恩杰,梁晓明,宋桂峰,叶飞. 盾构隧道围岩压力分布规律及作用模式[J]. 隧道与地下工程灾害防治, 2022, 4(4): 34-43.
[3] 喻伟,林赞权,朱彬彬,汪元冶,丁文其,乔亚飞,张晓东,龚琛杰. 盾构隧道防水密封垫材料的高温老化后性能[J]. 隧道与地下工程灾害防治, 2022, 4(4): 52-58.
[4] 赵辰洋,罗毛毛,邱静怡,倪芃芃,赵锋烽. 盾构隧道施工引起地层变形预测方法综述[J]. 隧道与地下工程灾害防治, 2022, 4(3): 31-46.
[5] 张治国,程志翔,陈杰,吴钟腾,李云正. 盾构隧道接缝渗漏水诱发既有管线变形模型试验[J]. 隧道与地下工程灾害防治, 2022, 4(3): 77-91.
[6] 刘祥勇,张鑫,王军,赵涛宁,朱先发. 盾构施工对邻近建筑物群结构影响评价[J]. 隧道与地下工程灾害防治, 2022, 4(3): 99-106.
[7] 丁智,李鑫家,张霄. 基于机器学习的盾构掘进地表变形预测研究与展望[J]. 隧道与地下工程灾害防治, 2022, 4(3): 1-9.
[8] 吕玺琳,赵庾成,曾盛. 砂层中盾构隧道开挖面稳定性物理模型试验[J]. 隧道与地下工程灾害防治, 2022, 4(3): 67-76.
[9] 潘秋景,李晓宙,黄杉,汪来,王树英,方国光. 机器学习在盾构隧道智能施工中的应用——综述与展望[J]. 隧道与地下工程灾害防治, 2022, 4(3): 10-30.
[10] 许有俊,王智广,张旭,郭飞,高胜雷,杨昆. 小转弯半径盾构隧道施工引起的地层变形特征[J]. 隧道与地下工程灾害防治, 2022, 4(2): 11-18.
[11] 陈峰军,宗军良,王祺,禹海涛. 地面出入式超浅埋盾构隧道静力响应模型试验[J]. 隧道与地下工程灾害防治, 2022, 4(2): 66-72.
[12] 黄昕,谷冠思,张子新,李昀. 考虑渗流的泥水平衡盾构隧道稳定性数值模拟[J]. 隧道与地下工程灾害防治, 2022, 4(2): 28-38.
[13] 马少俊, 李鑫家, 王乔坎, 丁智. 某深基坑开挖对邻近既有盾构隧道影响实测分析[J]. 隧道与地下工程灾害防治, 2022, 4(1): 86-94.
[14] 涂智溢,郭洪雨,孙飞,钟方杰,郑浩龙,张哲. 闹市区复杂环境下大直径盾构小净距下穿运营地铁隧道的应对措施及分析[J]. 隧道与地下工程灾害防治, 2021, 3(4): 75-84.
[15] 姜叶翔,周奇辉,羊逸君,苏凤阳,刘尊景,张霄,丁智. 采用管棚预支护方法的盾构穿越既有地铁隧道变形特征及加固影响实测分析[J]. 隧道与地下工程灾害防治, 2021, 3(2): 49-60.
[1] QIAN Qihu. Scientific use of the urban underground space to construction the harmonious livable and beautiful city[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 1 -7 .
[2] ZHOU Caigui, LI Jing, LIANG Qingguo, CHEN Kelin. Comparison of water inflow prediction methods of hydraulic diversion tunnels during construction[J]. Hazard Control in Tunnelling and Underground Engineering, 2023, 5(1): 32 -44 .
[3] LIN Ying, WANG Guobo, SHI Longfei, WANG Jianning. Seismic Response Study of Close Space Curve Tunnel Cluster[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -0 .
[4] YU Haisui, ZHUANG Peizhi. Cavity contraction theory and its application to tunnelling[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(4): 13 -32 .
[5] LIU Run, HUANG Xuanzhi, YUAN Yu, MA Pengcheng. Study of soil degradation effects on offshore wind turbine with large-diameter pile foundation[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(4): 56 -63 .
[6] HAN Guiwu, GUO Shutai, ZHOU Rou. Research and application of coal mine roadway oil storage technology system[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 .
[7] ZONG Junliang, RAO Qian, WANG Qi, YU Haitao. Numerical simulation of the dynamic response of ground penetrating ultra shallow-buried shield tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 .
[8] JIAO Yuyong, ZHANG Weishe, OU Guangzhao, ZOU Junpeng, CHEN Guanghui. Review of the evolution and mitigation of the water-inrush disaster in drilling-and-blasting excavated deep-buried tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 36 -46 .
[9] XIA Kaiwen, XU Ying, CHEN Rong. Dynamic tests of rocks subjected to simulated deep underground environments[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 58 -75 .
[10] TAN Zhongsheng. Application experimental study of high-strength lattice girders with heat treatment in tunnel engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 86 -92 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn