Please wait a minute...
 
隧道与地下工程灾害防治  2023, Vol. 5 Issue (3): 1-11    DOI: 10.19952/j.cnki.2096-5052.2023.03.01
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
远场地震作用下跨断层深埋隧道结构的动力变形破坏特征
蒋宇静1,王兴达1,2,张学朋1*
1. 山东科技大学矿山灾害预防控制省部共建国家重点实验室(培育), 山东 青岛 266590;2. 山东科技大学能源与矿业工程学院, 山东 青岛 266590
Dynamic deformation and failure characteristic of deep buried tunnel crossing fault under far-field earthquake loading
JIANG Yujing1, WANG Xingda1,2, ZHANG Xuepeng1*
1. State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, Shandong, China;
2. College of Energy and Mining Engineering, Shandong University of Science and Technology, Qingdao 266590, Shandong, China
下载:  PDF (15455KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为探究赋存断层岩体中隧道结构变形破坏基本特征,基于离散元理论,以断层位置、断层与隧道中心的法向距离、断层倾角及围岩等级为设计因素,采用UDEC程序开展地震波作用下跨断层深埋隧道结构动力响应数值模型试验。结果表明:地震波作用下不管隧道位于断层上盘还是下盘,衬砌结构均呈现出由椭圆型变形向扭曲变形转变的变形特征,围岩以剪切破坏为主,靠近断层一侧岩体塑性区向断层处延伸;断层穿过隧道中心时在地震波扰动作用下活化,衬砌最终呈现剪切变形特征,围岩塑性区沿断层面延伸;断层倾角和围岩等级保持不变时,断层与隧道中心的法向距离越大越有利于围岩-隧道结构的安全;断层与隧道中心的法向距离和围岩等级保持不变时,围岩塑性区面积随断层倾角增加呈现先减小后增大的变化趋势,而衬砌最大残余位移则表现先增大后减小的变化趋势;法向距离和断层倾角保持固定时,对于Ⅲ级围岩,衬砌未表现明显的椭圆型变形特征(接近圆形),围岩塑性区面积相比于IV级围岩显著减少;对于V级围岩,断层对隧道影响不明显,衬砌最终呈现收敛变形特征。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
蒋宇静
王兴达
张学朋
关键词:  地震波  断层  隧道衬砌  变形破坏特征    
Abstract: Dynamic response of deep buried tunnel structure crossing fault under the action of seismic waves was numerically analyzed based on the discrete element theory to explore the fundamental deformation and failure characteristic of tunnels. The simulation tests took fault location, normal distance between fault and tunnel center, fault dip angle and surrounding rock grade as design factors. All the lining structures showed deformation characteristics from elliptic mode to twisted mode under seismic waves with regardless of the spatial relation of the tunnel and fault. The surrounding rock mainly failed in shear and the plastic zone of the rock mass near the fault extended to the fault. When the fault passing through the center of the tunnel, the lining deformed in shear due to the seismic induced activation of the fault, and the plastic zone of surrounding rock extended along the fault plane. With the constant fault dip angle and surrounding rock grade, the greater the normal distance between the fault and tunnel was, the safer the tunnel was. With the constant normal distance and surrounding rock grade, the plastic zone area of surrounding rock decreased first and then increased with the increase of fault dip angle, vice versus for the maximum residual displacement of lining. When the surrounding rock grade was Ⅲ, the lining showed roughly circular deformation characteristic instead of obvious elliptic deformation and the plastic zone area of the surrounding rock was significantly reduced comparing to that of grade Ⅳ surrounding rock. When the surrounding rock grade was Ⅴ, the fault influence on the tunnel deformation was not obvious, and the lining finally showed convergent deformation characteristic.
Key words:  seismic wave    fault    tunnel lining    deformation-failure characteristic
收稿日期:  2022-11-20      修回日期:  2023-03-20      发布日期:  2023-09-20     
中图分类号:  U45  
基金资助: 国家自然科学基金资助项目(52109132);山东省自然科学基金资助项目(ZR2020QE270)
作者简介:  蒋宇静(1962— ),男,江苏靖江人,博士,教授,博士生导师,日本工程院外籍院士,主要研究方向为矿山及地下工程灾害防控理论与技术. E-mail:jiangyjcn@gmail.com. *通信作者简介:张学朋(1989— ),男,山东滨州人,博士,副研究员,硕士生导师,主要研究方向为隧道及地下工程灾害防控理论与技术. E-mail:zhangxuepeng0722@126.com
引用本文:    
蒋宇静, 王兴达, 张学朋. 远场地震作用下跨断层深埋隧道结构的动力变形破坏特征[J]. 隧道与地下工程灾害防治, 2023, 5(3): 1-11.
JIANG Yujing, WANG Xingda, ZHANG Xuepeng. Dynamic deformation and failure characteristic of deep buried tunnel crossing fault under far-field earthquake loading. Hazard Control in Tunnelling and Underground Engineering, 2023, 5(3): 1-11.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2023/V5/I3/1
[1] WANG W L, WANG T T, SU J J, et al. Assessment of damage in mountain tunnels due to the Taiwan Chi-Chi Earthquake[J]. Tunnelling and Underground Space Technology, 2001, 16(3):133-150.
[2] 崔光耀, 伍修刚, 王明年, 等. 汶川8.0级大地震公路隧道震害调查与震害特征[J]. 现代隧道技术, 2017, 54(2):9-16. CUI Guangyao, WU Xiugang, WANG Mingnian, et al. Earthquake damages and characteristics of highway tunnels in the 8.0-magnitude Wenchuan Earthquake[J]. Modern Tunnelling Technology, 2017, 54(2):9-16.
[3] SHEN Y S, GAO B, YANG X M, et al. Seismic damage mechanism and dynamic deformation characteristic analysis of mountain tunnel after Wenchuan Earthquake[J]. Engineering Geology, 2014, 180:85-98.
[4] ZHANG X P, JIANG Y J, MAEGAWA K. Mountain tunnel under earthquake force: a review of possible causes of damages and restoration methods[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2020, 12(2):414-426.
[5] 张威, 李明, 姬云平, 等. 青海门源M6.9地震典型隧道破坏特征分析与启示[J]. 地震工程学报, 2022, 44(3):661-669. ZHANG Wei, LI Ming, JI Yunping, et al. Analysis and enlightenment of typical failure characteristics of tunnels caused by the Menyuan M6.9 earthquake in Qinghai Province[J]. China Earthquake Engineering Journal, 2022, 44(3):661-669.
[6] GOODMAN R E. Methods of geological engineering in discontinuous rocks[M]. St. Paul: West Pub. Co., 1976.
[7] 耿萍, 曾冠雄, 郭翔宇, 等. 近场脉冲地震作用下穿越断层带隧道地震响应[J]. 中国公路学报, 2020, 33(5):122-131. GENG Ping, ZENG Guanxiong, GUO Xiangyu, et al. Seismic response of tunnel structures passing through fault zone under near-field pulsed earthquakes[J]. China Journal of Highway and Transport, 2020, 33(5):122-131.
[8] 梁波, 杨仕恒, 赵冯兵, 等. 特大断面隧道断层段地震响应与断层构造关系[J]. 科学技术与工程, 2020, 20(34):14272-14277. LIANG Bo, YANG Shiheng, ZHAO Fengbing, et al. The relationship between seismic response and fault structure in fault section of extra-large section tunnel[J]. Science Technology and Engineering, 2020, 20(34):14272-14277.
[9] 崔臻, 盛谦. 近断层/远场地震动作用下控制性岩体结构对地下洞室地震稳定性影响研究[J]. 岩石力学与工程学报, 2017, 36(1):53-67. CUI Zhen, SHENG Qian. Seismic response of underground rock cavern dominated by a large geological discontinuity subjected to near-fault and far-field ground motions[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(1):53-67.
[10] WANG X W, XIONG Q R, ZHOU H, et al. Three-dimensional(3D)dynamic finite element modeling of the effects of a geological fault on the seismic response of underground caverns[J]. Tunnelling and Underground Space Technology, 2020, 96:103210.
[11] ZHU J B, LI Y S, PENG Q, et al. Stress wave propagation across jointed rock mass under dynamic extension and its effect on dynamic response and supporting of underground opening[J]. Tunnelling and Underground Space Technology, 2021, 108:103648.
[12] LAJIMI A S, YAZDANI M, LANGROUDI A A. Control of fault lay-out on seismic design of large underground caverns[J]. Tunnelling and Underground Space Technology, 2015, 50:305-316.
[13] 李鹏, 苏生瑞, 王闫超, 等. 含软弱层岩质边坡的动力响应研究[J]. 岩土力学, 2013, 34(增刊 1):365-370. LI Peng, SU Shengrui, WANG Yanchao, et al. Research on dynamic response of rock slope with weak layer[J]. Rock and Soil Mechanics, 2013, 34(Suppl.1):365-370.
[14] 徐奴文, 李韬, 戴峰, 等. 基于离散元模拟和微震监测的白鹤滩水电站左岸岩质边坡稳定性分析[J]. 岩土力学, 2017, 38(8):2358-2367. XU Nuwen, LI Tao, DAI Feng, et al. Stability analysis on the left bank slope of Baihetan hydropower station based on discrete element simulation and microseismic monitoring[J]. Rock and Soil Mechanics, 2017, 38(8):2358-2367.
[15] HOEK E, BROWN E T. Underground excavations in rock[M]. London,UK: Institution of Mining and Metallurgy, 1980.
[16] 吴顺川. 岩石力学[M]. 北京: 高等教育出版社, 2021.
[17] 中华人民共和国交通运输部. 公路隧道设计细则: JTG/T D70—2010[S]. 北京: 人民交通出版社, 2010.
[18] 石崇, 徐卫亚, 周家文. 二维波穿过非线性节理面的透射性能研究[J]. 岩石力学与工程学报, 2007, 26(8):1645-1652. SHI Chong, XU Weiya, ZHOU Jiawen. Research on transmission behaviors of nonlinear joints with 2d wave propagation[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(8):1645-1652.
[19] 陆祥丹. 应力波下地下硐室稳定性的数值分析[D]. 南京: 东南大学, 2020. LU Xiangdan. Numerical analysis of stability of underground tunnel under stress wave[D]. Nanjing: Southeast University, 2020.
[20] Itasca Consulting Group Inc.. UDEC 7.0 documentation[Z]. Minneapolis, US: Itasca, 2018.
[1] 周旭明, 石钰锋, 张利敏, 张慧鹏, 曹成威, 陈昭阳. 边墙与仰拱连接处缺陷对隧道结构影响试验[J]. 隧道与地下工程灾害防治, 2023, 5(1): 74-80.
[2] 孙文斌, 曹震博, 董法旭. 断层破碎带岩石裂隙渗透性的表征方法[J]. 隧道与地下工程灾害防治, 2023, 5(1): 1-7.
[3] 李荣建, 李浩泽, 白维仕, 王磊, 张瑾. 潜在滑动面对隧道衬砌承载特性影响的模型试验研究[J]. 隧道与地下工程灾害防治, 2021, 3(4): 1-8.
[4] 王密田, 王迎超, 王楠, 冯帅, 李文豪, 羊嘉杰. 降雨条件下断层隧道突水灾变演化规律[J]. 隧道与地下工程灾害防治, 2021, 3(4): 40-52.
[5] 禹海涛, 陈志伟. 基于连续-离散耦合方法的隧道开挖对近断层的影响机制研究[J]. 隧道与地下工程灾害防治, 2021, 3(3): 20-28.
[6] 李鹏飞,刘宏翔,赵勇,刘建友,王帆. 隧道穿越断层破碎带防突水最小安全厚度及其影响因素[J]. 隧道与地下工程灾害防治, 2020, 2(3): 77-84.
[7] 蒋宇静,张学朋. 纤维增强聚合物水泥砂浆基复合材料在运营隧道衬砌中加固效果评价[J]. 隧道与地下工程灾害防治, 2020, 2(1): 11-19.
[8] 董陇军,王钧晖,马举. 不同微震震源机制下地下硐室围岩响应及支护建议[J]. 隧道与地下工程灾害防治, 2019, 1(3): 68-76.
[9] 丁秀丽, 张雨霆, 张传健, 颜天佑, 黄书岭. 隧洞穿越活动断层应对措施及其适应性研究综述[J]. 隧道与地下工程灾害防治, 2019, 1(1): 20-35.
[10] 张庆松,张连震,李鹏,冯啸. 地下工程富水软弱地层注浆加固理论研究新进展[J]. 隧道与地下工程灾害防治, 2019, 1(1): 47-57.
[1] DENG Mingjiang, LIU Bin. Challenges, countermeasures and development direction of geological forward-prospecting for TBM cluster tunneling in super-long tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 8 -19 .
[2] DING Xiuli, ZHANG Yuting, ZHANG Chuanjian, YAN Tianyou, HUANG Shuling. Review on countermeasures and their adaptability evaluation to tunnels crossing active faults[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 20 -35 .
[3] JIAO Yuyong, ZHANG Weishe, OU Guangzhao, ZOU Junpeng, CHEN Guanghui. Review of the evolution and mitigation of the water-inrush disaster in drilling-and-blasting excavated deep-buried tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 36 -46 .
[4] ZHANG Qingsong, ZHANG Lianzhen, LI Peng, FENG Xiao. New progress in grouting reinforcement theory of water-rich soft stratum in underground engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 47 -57 .
[5] XIA Kaiwen, XU Ying, CHEN Rong. Dynamic tests of rocks subjected to simulated deep underground environments[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 58 -75 .
[6] HONG Kairong. Study on rock breaking and wear of TBM hob in high-strength high-abrasion stratum[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 76 -85 .
[7] TAN Zhongsheng. Application experimental study of high-strength lattice girders with heat treatment in tunnel engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 86 -92 .
[8] CHEN Jianxun, LUO Yanbin. The stability of structure and its control technology for lager-span loess tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 93 -101 .
[9] JING Hongwen, YU Liyuan, SU Haijian, GU Jincai, YIN Qian. Development and application of catastrophic experiment system for water inrush in surrounding rock of deep tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 102 -110 .
[10] LI Tianbin, WU Chendi, MENG Lubo, GAO Meiben. Study on dynamic analysis and comprehensive warning method of tunnel collapse[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 111 -118 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn