Please wait a minute...
 
隧道与地下工程灾害防治  2023, Vol. 5 Issue (3): 19-26    DOI: 10.19952/j.cnki.2096-5052.2023.03.03
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
基于BP神经网络的圆形隧道地震响应预测方法及参数分析
禹海涛1,朱晨阳2
1. 同济大学岩土及地下工程教育部重点实验室, 上海 200092;2. 同济大学地下建筑与工程系, 上海 200092
A BP neural network-based prediction method for seismic response of circular tunnel linings and parameter analysis
YU Haitao1, ZHU Chenyang2
1. Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University, Shanghai 200092, China;
2. Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China
下载:  PDF (1826KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 提出一种基于人工神经网络的圆形隧道地震响应预测方法,以基岩地震动峰值、隧道埋深、地层-结构相对刚度比、隧道与地层接触条件为基本输入参数,对圆形隧道在不同地震动作用下的衬砌受力和变形(包括弯矩、轴力、剪力、直径变化率等结构关键响应指标)进行预测。通过反应加速度法建立由不同输入参数组合而成的320组隧道结构地震响应数值计算模型,提取结果得到数据集并用于预测模型的建立和测试。结果表明,各组模型的响应预测值和基准值的均方误差与相关系数均表现良好,验证了分析模型的可行性。基于数据训练后的预测模型可以得到地震动输入下隧道结构的地震响应,拟合出圆形隧道地震响应的预测公式,通过与退化条件下深埋圆形隧道地震响应的经典解析解对比,验证了方法的有效性。本方法还可以方便快速地对基本输入参数的敏感性影响进行排序和对作用效应进行分析,为地下结构抗震设计和分析提供了新的分析手段。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
禹海涛
朱晨阳
关键词:  机器学习  圆形隧道  地震响应  预测公式  敏感性分析    
Abstract: A prediction method of seismic response of circular tunnel based on artificial neural network was proposed. Taking the peak value of bedrock ground motion, the buried depth of tunnel, the relative stiffness ratio of stratum to structure and the contact condition between tunnel and stratum as the basic input parameters, the key response indexes of lining stress and deformation including bending moment, axial force, shear force and diameter change rate of circular tunnel under different ground motions were predicted. Through the response acceleration method, 320 sets of numerical calculation models for seismic response of tunnel structures composed of different input parameter values were established. The results were extracted to obtain the data set of this research and used for the establishment and test of the prediction model. The results showed that the mean square error and correlation coefficient of the response prediction value and the reference value of each group of models performed well, which verified the feasibility of the analysis model. Based on the prediction model after data training, the seismic response of tunnel structure under arbitrary ground motion input could be obtained, and then the prediction formula of seismic response of circular tunnel could be fitted. The validity of the method was verified by comparing with the classical analytical solution of seismic response of deep buried circular tunnel under degraded conditions. This method could also conveniently and quickly analyze the sensitivity influence ranking and effect of basic input parameters, which provided a new analysis method for seismic design and analysis of underground structures.
Key words:  machine learning    circular tunnel    seismic response    prediction formula    sensitivity analysis
收稿日期:  2023-01-10      发布日期:  2023-09-20     
中图分类号:  TU92  
基金资助: 国家自然科学基金资助项目(42177134);中央高校基本科研业务费专项资金资助项目
作者简介:  禹海涛(1983—),男,河南泌阳人,博士,教授,博士生导师,国家优秀青年基金获得者,主要研究方向为岩土与地下工程防灾减灾. E-mail:yuhaitao@tongji.edu.cn
引用本文:    
禹海涛, 朱晨阳. 基于BP神经网络的圆形隧道地震响应预测方法及参数分析[J]. 隧道与地下工程灾害防治, 2023, 5(3): 19-26.
YU Haitao, ZHU Chenyang. A BP neural network-based prediction method for seismic response of circular tunnel linings and parameter analysis. Hazard Control in Tunnelling and Underground Engineering, 2023, 5(3): 19-26.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2023/V5/I3/19
[1] YUKIO T, IKUO T. Seismic soil structure interaction of cross sections of flexible underground structures subjected to soil liquefaction[J]. Soils and Foundations, 2003, 43(2):69-87.
[2] 袁勇,禹海涛,燕晓,等. 超长沉管隧道多点振动台试验模拟与分析[J]. 中国公路学报, 2016, 29(12):157-165. YUAN Yong, YU Haitao, YAN Xiao, et al. Multi-point shaking table test simulation and analysis of a super-long immersed tunnel[J]. China Journal of Highway and Transport, 2016, 29(12):157-165.
[3] GOMES R C, GOUVEIA F, TORCATO D, et al. Seismic response of shallow circular tunnels in two-layered ground[J]. Soil Dynamics and Earthquake Engineering, 2015, 75:37-43.
[4] 黄忠凯,张冬梅. 软土地层浅埋盾构隧道地震易损性分析[J]. 现代隧道技术, 2020, 57(5):51-60. HUANG Zhongkai, ZHANG Dongmei. Seismic vulnerability analysis of the shallow-buried shield tunnel in soft soil stratum[J]. Modern Tunnelling Technology, 2020, 57(5):51-60.
[5] WANG J N. Seismic design of tunnels: a simple state-of-the-art design approach[M].New York,USA: Parsons Brinckerhoff Quade and Douglas Inc, 1993.
[6] BOBET A. Drained and undrained response of deep tunnels subjected to far-field shear loading[J]. Tunnelling and Underground Space Technology, 2010, 25(1):21-31.
[7] SAJEDI S O, LIANG X. A data-driven framework for near real-time and robust damage diagnosis of building structures[J]. Structural Control and Health Monitoring, 2020, 27(3):e2488.1-e2488.22.
[8] XUE Y D, LI Y C. A fast detection method via region-based fully convolutional neural networks for shield tunnel lining defects[J]. Computer-Aided Civil and Infrastructure Engineering, 2018, 33(8):638-654.
[9] HUANG P F, CHEN Z Y. Deep learning for nonlinear seismic responses prediction of subway station[J]. Engineering Structures, 2021, 244(5):112735.
[10] RUMELHART D E, HINTON G E, WILLIAMS R J. Learning representations by back-propagating errors[J]. Nature, 1986, 323(6088):533-536.
[11] KATAYAMA Ikuo, ADACHI Masanobu, SHIMADA Minoru, et al. A proposal for a practical quasi-dynamic response to seismic intensity method for buried structures[C] //Proceedings of the 40th Annual Lecture of the Civil Society Section 1. Tokyo, Japan: Japan Society of Civil Engineers, 1985, 40:737-738.
[12] 禹海涛,张正伟,李攀.地下结构抗震设计的改进等效反应加速度法[J].岩土力学,2020,41(7):2401-2410. YU Haitao, ZHANG Zhengwei, LI Pan. Improved equivalent response acceleration method for seismic design of underground structures[J]. Rock and Soil Mechanics, 2020, 41(7):2401-2410.
[13] 中华人民共和国住房和城乡建设部.城市轨道交通结构抗震设计规范[M]. 北京:中国计划出版社,2014.
[14] POWER M S, ROSIDI D, KANESHIRO J Y. Seismic vulnerability of tunnels and underground structures revisited[C] //Proceedings of North American Tunneling.Newport Beach, USA:[s.n] , 1998:243-250.
[15] WANG Z Z, ZHANG Z. Seismic damage classification and risk assessment of mountain tunnels with a validation for the 2008 Wenchuan Earthquake[J]. Soil Dynamics and Earthquake Engineering, 2013, 45:45-55.
[16] CHEN Z Y, SHI C, LI T B, et al. Damage characteristics and influence factors of mountain tunnels under strong earthquakes[J]. Natural Hazards, 2012, 61(2):387-401.
[17] WANG J N. Seismic design of tunnels: a simple state-of-the-art design approach[M].New York,USA: Parsons Brinckerh-off Quade and Douglas, Inc., 1993.
[18] 中华人民共和国原城乡建筑环境保护部.建筑抗震设计规范:GB50011—2010[S].北京:中国建筑工业出版社, 2009.
[19] 同济大学,上海申通轨道交通研究咨询有限公司.地下铁道建筑结构抗震设计规范:DG/TJ08—2064—2009[S].上海:上海市建筑建材业市场管理总站, 2009.
[20] 杨喻声,禹海涛,袁勇.地下结构抗震分析中若干土层模拟方法对比研究[J].防灾减灾工程学报,2019,39(2):244-249. YANG Yusheng, YU Haitao, YUAN Yong. Comparative study of several soil layer simulation methods in seismic analysis of underground structures [J]. Journal of Disaster Prevention and Mitigation Engineering, 2019, 39(2):244-249.
[21] 陈国兴, 庄海洋, 徐烨. 软弱地基浅埋隧洞对场地设计地震动的影响[J].岩土工程学报,2004,26(6):739-744. CHEN Guoxing, ZHUANG Haiyang, XU Ye. A study on influence of excavated shallow tunnel on design parameters of ground motion in the soft site[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(6):739-744.
[22] JALAL F E, XU Y, IQBAL M, et al. Predictive modeling of swell-strength of expansive soils using artificial intelligence approaches: ANN, ANFIS and GEP[J]. Journal of Environmental Management, 2021, 289:112420.
[23] HISHAM M, HAMDY G, EL-MAHDY O O. Prediction of temperature variation in FRP-wrapped RC columns exposed to fire using artificial neural networks[J]. Engineering Structures, 2021, 238:112219.
[24] 赵弘, 周瑞祥, 林廷圻. 基于Levenberg-Marquardt算法的神经网络监督控制[J]. 西安交通大学学报, 2002, 36(5):523-527. ZHAO Hong, ZHOU Ruixiang, LIN Tingqi. Neural network supervised control based on levenberg-marquardt algorithm[J]. Journal of Xi'an Jiaotong University, 2002, 36(5):523-527.
[25] 张峤,邓贵仕. Levenberg-Marquardt神经网络在煤矿作业人员人因可靠性评价中应用研究[J].大连理工大学学报,2015, 55(4):424-430. ZHANG Qiao, DENG Guishi. Investigation on application of Levenberg-Marquardt neural networks to human reliability evaluation of coalmine workers[J]. Journal of Dalian University of Technology, 2015, 55(4):424-430.
[26] LI X L, LU J F. Energy-saving feature extraction method for urban buildings with near-zero energy-consuming based on SVR[J]. International Journal of Global Energy Issues, 2020, 42(5/6):375.
[27] ARGYROUDIS S A, PITILAKIS K D. Seismic fragility curves of shallow tunnels in alluvial deposits[J]. Soil Dynamics and Earthquake Engineering, 2012, 35:1-12.
[28] SOTIRIOS Argyroudis, GRIGORIOS Tsinidis, FILIPPO Gatti, et al. Effects of SSI and lining corrosion on the seismic vulnerability of shallow circular tunnels[J]. Soil Dynamics and Earthquake Engineering, 2017, 98:244-256.
[29] MIAH M I, AHMED S, ZENDEHBOUDI S, et al. Machine learning approach to model rock strength: prediction and variable selection with aid of log data[J].Rock Mechanics and Rock Engineering, 2020, 53(10):4691-4715.
[30] HUANG Z, ARGYROUDIS S A, PITILAKIS K, et al. Fragility assessment of tunnels in soft soils using artificial neural networks[J].Underground Space, 2022, 7(2):242-253.
[31] 闫长斌,汪鹤健,周建,等.基于Bootstrap-SVR-ANN算法的TBM施工速度预测[J]. 岩土工程学报, 2021, 43(6):1078-1087. YAN Changbin, WANG Hejian, ZHOU Jian, et al. Prediction of TBM advance rate based on Bootstrap method and SVR-ANN algorithm[J]. Journal of Geotechnical Engineering, 2021, 43(6):1078-1087.
[32] 马莎,肖明,黄志全.PLS-ANN在岩体力学参数优选中的应用[J]. 武汉大学学报(工学版), 2008, 41(3):43-46. MA Sha, XIAO Ming, HUANG Zhiquan. PLS-ANN method and its application to select rock mass mechanical para meters[J]. Journal of Wuhan University(Engineering), 2008, 41(3):43-46.
[33] GÖKHAN A, GÜZELLER C O, ESER M T. The effect of the normalization method used in different sample sizes on the success of artificial neural network model[J]. International Journal of Assessment Tools in Education, 2019, 6(2):170-192.
[1] 加瑞, 杨岗, 郑刚. 盾构隧道施工历史对隧道地震响应的影响[J]. 隧道与地下工程灾害防治, 2023, 5(3): 41-51.
[2] 林颖, 王国波, 施龙飞, 王建宁. 近距离空间曲线隧道群地震响应[J]. 隧道与地下工程灾害防治, 2023, 5(3): 86-92.
[3] 宗军良, 饶倩, 王祺, 禹海涛. 地面出入式盾构隧道动力响应的数值模拟[J]. 隧道与地下工程灾害防治, 2023, 5(3): 63-70.
[4] 丁智, 李鑫家, 张霄. 基于机器学习的盾构掘进地表变形预测研究与展望[J]. 隧道与地下工程灾害防治, 2022, 4(3): 1-9.
[5] 潘秋景, 李晓宙, 黄杉, 汪来, 王树英, 方国光. 机器学习在盾构隧道智能施工中的应用——综述与展望[J]. 隧道与地下工程灾害防治, 2022, 4(3): 10-30.
[6] 房倩,杜建明,王赶,王中举,王官清. 砂土隧道开挖地层变形规律及影响因素分析[J]. 隧道与地下工程灾害防治, 2020, 2(3): 67-76.
[7] 耿萍,何川,张景,何悦,郭翔宇,陈枰良,王琦,杨琪,陈昌健. 盾构隧道地震响应试验研究[J]. 隧道与地下工程灾害防治, 2020, 2(2): 47-57.
[8] 禹海涛,王祺,刘涛. 均质地层长隧道纵向地震响应解析解[J]. 隧道与地下工程灾害防治, 2020, 2(1): 34-41.
[9] 张治国, 张洋彬, 王志伟, 方蕾, 马少坤, 师敏之, 魏纲. 类矩形截面隧道开挖诱发邻近管线变形模型试验与数值模拟研究[J]. 隧道与地下工程灾害防治, 2019, 1(4): 85-96.
[1] DENG Mingjiang, LIU Bin. Challenges, countermeasures and development direction of geological forward-prospecting for TBM cluster tunneling in super-long tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 8 -19 .
[2] DING Xiuli, ZHANG Yuting, ZHANG Chuanjian, YAN Tianyou, HUANG Shuling. Review on countermeasures and their adaptability evaluation to tunnels crossing active faults[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 20 -35 .
[3] JIAO Yuyong, ZHANG Weishe, OU Guangzhao, ZOU Junpeng, CHEN Guanghui. Review of the evolution and mitigation of the water-inrush disaster in drilling-and-blasting excavated deep-buried tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 36 -46 .
[4] ZHANG Qingsong, ZHANG Lianzhen, LI Peng, FENG Xiao. New progress in grouting reinforcement theory of water-rich soft stratum in underground engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 47 -57 .
[5] XIA Kaiwen, XU Ying, CHEN Rong. Dynamic tests of rocks subjected to simulated deep underground environments[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 58 -75 .
[6] HONG Kairong. Study on rock breaking and wear of TBM hob in high-strength high-abrasion stratum[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 76 -85 .
[7] TAN Zhongsheng. Application experimental study of high-strength lattice girders with heat treatment in tunnel engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 86 -92 .
[8] CHEN Jianxun, LUO Yanbin. The stability of structure and its control technology for lager-span loess tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 93 -101 .
[9] JING Hongwen, YU Liyuan, SU Haijian, GU Jincai, YIN Qian. Development and application of catastrophic experiment system for water inrush in surrounding rock of deep tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 102 -110 .
[10] LI Tianbin, WU Chendi, MENG Lubo, GAO Meiben. Study on dynamic analysis and comprehensive warning method of tunnel collapse[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 111 -118 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn