Please wait a minute...
 
隧道与地下工程灾害防治  2023, Vol. 5 Issue (3): 63-70    DOI: 10.19952/j.cnki.2096-5052.2023.03.07
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
地面出入式盾构隧道动力响应的数值模拟
宗军良1,饶倩1,王祺2,禹海涛2,3
1. 上海黄浦江越江设施投资建设发展有限公司, 上海 200002;2. 同济大学地下建筑与工程系, 上海 200092;3. 同济大学土木工程防灾国家重点实验室, 上海 200092
Numerical simulation of the dynamic response of ground penetrating ultra shallow-buried shield tunnel
ZONG Junliang1, RAO Qian1, WANG Qi2, YU Haitao2,3
1. Shanghai Huangpu River Cross-river Facilities Investment Construction Development Co., Ltd., Shanghai 200002, China;
2. Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China;
3. State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University, Shanghai 200092, China
下载:  PDF (7669KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对地面出入式盾构隧道(ground penetrating shield technology, GPST)的地震动力响应规律进行研究。建立地面出入式盾构隧道的三维动力时程有限元模型。模型考虑上海场地的动力特性,合理模拟动力人工边界、管片纵缝和环缝,土-结构相互作用。分析隧道响应和场地响应,并对螺栓预紧力、纵向坡度、地面压重和顶部开洞等工况进行参数化分析。研究结果表明:地面出入式盾构隧道结构能在一定程度上放大地表加速度响应,大幅提高出露地表段的结构直径变形和加速度响应;提高螺栓预紧力、提高隧道纵坡度和增加地面抗浮压重板等措施可在一定程度上改善结构响应,但顶部开洞会显著放大隧道动力响应。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宗军良
饶倩
王祺
禹海涛
关键词:  地面出入  盾构隧道  地震响应  有限元模拟  参数分析    
Abstract: The seismic dynamic response law of ground penetrating shield technology(GPST)tunnel was studied. A three-dimensional dynamic finite element model of the ground-penetrating shield tunnel was established. The model took into account the dynamic characteristics of the Shanghai site and reasonably simulated the dynamic artificial boundary, the longitudinal and annular joints of the tunnel lining, and the soil-structure interactions. The tunnel response and site response were analyzed, and parametric analyses were performed for bolt preload, longitudinal slope, ground surcharge loading and top opening conditions. The results showed that the GPST tunnel structure could amplify the ground acceleration response, and the structural diameter deformation and acceleration response of the exposed surface section would be significantly increased. The results of the parametric analysis showed that increasing the bolt preload, increasing the longitudinal slope of the tunnel and setting a surface surcharge plate could improve the structural response; however, the top opening would significantly amplify the tunnel dynamic response.
Key words:  GPST    shield tunnel    seismic response    finite element model    parametric analysis
收稿日期:  2023-05-24      发布日期:  2023-09-20     
中图分类号:  U452.28  
基金资助: 上海市科学技术委员会课题资助项目(18DZ1205100,18DZ1205101)
作者简介:  宗军良(1980— ),男,浙江义乌人,博士,高级工程师,主要研究方向为市政道路工程技术管理. E-mail:23282010@qq.com
引用本文:    
宗军良, 饶倩, 王祺, 禹海涛. 地面出入式盾构隧道动力响应的数值模拟[J]. 隧道与地下工程灾害防治, 2023, 5(3): 63-70.
ZONG Junliang, RAO Qian, WANG Qi, YU Haitao. Numerical simulation of the dynamic response of ground penetrating ultra shallow-buried shield tunnel. Hazard Control in Tunnelling and Underground Engineering, 2023, 5(3): 63-70.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2023/V5/I3/63
[1] SHARMA S, JUDD W R. Underground opening damage from earthquakes[J]. Engineering Geology, 1991, 30(3):263-276.
[2] 张子新,胡文,刘超,等.地面出入式盾构法隧道新技术大型模型试验与工程应用研究[J].岩石力学与工程学报,2013,32(11):2161-2169. ZHANG Zixin, HU Wen, LIU Chao, et al. Investigation of ground pass shield tunnelling method based on large-scale model test and its engineering application[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(11):2161-2169.
[3] 郑斌.大直径 GPST 盾构管片稳定装置设计[J].建筑科技,2021,5(5):91-94. ZHENG Bin. Huge diameter GPST shield segment stabilizing device design[J]. Building Technology, 2021, 5(5):91-94.
[4] 赵辛玮,马永其,滕丽.盾构快速穿越法超浅覆土及负覆土隧道施工预测分析[J].上海大学学报(自然科学),2015,21(4):454-466. ZHAO Xinwei, MA Yongqi, TENG Li. Predictive analysis on shield tunnel using ultra-rapid under pass method[J]. Journal of Shanghai University(Natural Science Edition), 2015, 21(4):454-466.
[5] 王祺,禹海涛,戴春祥,等.软土超浅埋盾构隧道地震反应分析[J].现代隧道技术,2018,55(增刊2):493-500. WANG Qi, YU Haitao, DAI Chunxiang, et al. Seismic response analysis of ultra-shallow buried shield tunnel in soft soils[J]. Modern Tunnelling Technology, 2018, 55(Suppl.2):493-500.
[6] DING W, JIN Y, ZHAO W, et al. A computational method for ground penetrating shield tunnel[C] //Geo-Shanghai.Shanghai:Tunneling and Underground Construction, 2014:227-236.
[7] 吴惠明. 地面出入式盾构隧道结构变形特性及控制研究[D].上海:上海大学,2014. WU Huiming. Study on characteristic analyse and controllingtechnology of structure deformation in GPST[D]. Shanghai: Shanghai University, 2014.
[8] 高守栋. 地面出入式盾构施工地层扰动机理及管片受力特性研究[D].广州:广州大学,2020. GAO Shoudong. Study on the strata disturbance and mechanical properties of lining segment during GPST tunneling process[D]. Guangzhou: Guangzhou University, 2020.
[9] 张旭,叶冠林,吴惠明,等.地面出入式盾构隧道受力变形特性数值分析[J].地下空间与工程学报,2016,12(2):436-441. ZHANG Xu, YE Guanlin, WU Huiming, et al. Numerical study on deformation characteristics of ground penetrating shield tunnel[J]. Chinese Journal of Underground Space and Engineering, 2016, 12(2):436-441.
[10] 高守栋,刘超,张子新,等.地面出入式盾构隧道施工对周边地层扰动研究[J].地下空间与工程学报,2020,16(3):903-914. GAO Shoudong, LIU Chao, ZHANG Zixin, et al. Study on the influence of surrounding strata during GPST tunnelling process[J]. Chinese Journal of Underground Space and Engineering, 2020, 16(3):903-914.
[11] 刘晶波, 李彬. 三维黏弹性静-动力统一人工边界[J]. 中国科学E辑(英文版), 2005(9):966-980.
[12] 张冬梅, 樊振宇, 黄宏伟. 考虑接头力学特性的盾构隧道衬砌结构计算方法研究[J]. 岩土力学, 2010, 31(8):2546-2552. ZHANG Dongmei, FAN Zhenyu, HUANG Hongwei. Calculation method of shield tunnel lining considering mechanical characteristics of joints[J]. Rock and Soil Mechanics, 2010, 31(8):2546-2552.
[13] 国家标准抗震规范管理组.建筑抗震设计规范:GB50011—2010[S].北京:中国建筑工业出版社,2016.
[14] 同济大学.建筑抗震设计规程:DGJ08-9—2013[S].上海:上海市城乡建设和交通委员会,2013.
[15] 中国建筑科学研究院.混凝土结构设计规范:GB50010—2010[S].北京:中国建筑工业出版社,2011.
[16] 李冬梅,陈正杰,杨志豪.上海长江隧道管片环缝抗剪性能的试验与分析[J].地下工程与隧道,2011(1):15-17.
[17] 日本土木学会.隧道标准规范(盾构篇)及解说[M].朱伟,译.北京:中国建筑工业出版社, 2011.
[1] 加瑞, 杨岗, 郑刚. 盾构隧道施工历史对隧道地震响应的影响[J]. 隧道与地下工程灾害防治, 2023, 5(3): 41-51.
[2] 王伟, 刘英, 庄海洋, 赵凯, 陈国兴. 考虑内部结构的大直径盾构隧道抗震性能[J]. 隧道与地下工程灾害防治, 2023, 5(3): 78-85.
[3] 林颖, 王国波, 施龙飞, 王建宁. 近距离空间曲线隧道群地震响应[J]. 隧道与地下工程灾害防治, 2023, 5(3): 86-92.
[4] 禹海涛, 朱晨阳. 基于BP神经网络的圆形隧道地震响应预测方法及参数分析[J]. 隧道与地下工程灾害防治, 2023, 5(3): 19-26.
[5] 魏纲, 徐天宝, 张治国. 复杂应力路径下波纹钢加固盾构隧道数值分析[J]. 隧道与地下工程灾害防治, 2023, 5(2): 24-32.
[6] 王智, 刘祥勇, 朱先发, 洪小星, 沈一鸣, 张冰利. 小曲率半径隧道施工对盾构管片结构影响[J]. 隧道与地下工程灾害防治, 2023, 5(1): 45-54.
[7] 韩兴博, 陈子明, 苏恩杰, 梁晓明, 宋桂峰, 叶飞. 盾构隧道围岩压力分布规律及作用模式[J]. 隧道与地下工程灾害防治, 2022, 4(4): 34-43.
[8] 喻伟, 林赞权, 朱彬彬, 汪元冶, 丁文其, 乔亚飞, 张晓东, 龚琛杰. 盾构隧道防水密封垫材料的高温老化后性能[J]. 隧道与地下工程灾害防治, 2022, 4(4): 52-58.
[9] 赵辰洋, 罗毛毛, 邱静怡, 倪芃芃, 赵锋烽. 盾构隧道施工引起地层变形预测方法综述[J]. 隧道与地下工程灾害防治, 2022, 4(3): 31-46.
[10] 潘秋景, 李晓宙, 黄杉, 汪来, 王树英, 方国光. 机器学习在盾构隧道智能施工中的应用——综述与展望[J]. 隧道与地下工程灾害防治, 2022, 4(3): 10-30.
[11] 张治国, 程志翔, 陈杰, 吴钟腾, 李云正. 盾构隧道接缝渗漏水诱发既有管线变形模型试验[J]. 隧道与地下工程灾害防治, 2022, 4(3): 77-91.
[12] 刘祥勇, 张鑫, 王军, 赵涛宁, 朱先发. 盾构施工对邻近建筑物群结构影响评价[J]. 隧道与地下工程灾害防治, 2022, 4(3): 99-106.
[13] 丁智, 李鑫家, 张霄. 基于机器学习的盾构掘进地表变形预测研究与展望[J]. 隧道与地下工程灾害防治, 2022, 4(3): 1-9.
[14] 吕玺琳, 赵庾成, 曾盛. 砂层中盾构隧道开挖面稳定性物理模型试验[J]. 隧道与地下工程灾害防治, 2022, 4(3): 67-76.
[15] 许有俊, 王智广, 张旭, 郭飞, 高胜雷, 杨昆. 小转弯半径盾构隧道施工引起的地层变形特征[J]. 隧道与地下工程灾害防治, 2022, 4(2): 11-18.
[1] DENG Mingjiang, LIU Bin. Challenges, countermeasures and development direction of geological forward-prospecting for TBM cluster tunneling in super-long tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 8 -19 .
[2] DING Xiuli, ZHANG Yuting, ZHANG Chuanjian, YAN Tianyou, HUANG Shuling. Review on countermeasures and their adaptability evaluation to tunnels crossing active faults[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 20 -35 .
[3] JIAO Yuyong, ZHANG Weishe, OU Guangzhao, ZOU Junpeng, CHEN Guanghui. Review of the evolution and mitigation of the water-inrush disaster in drilling-and-blasting excavated deep-buried tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 36 -46 .
[4] ZHANG Qingsong, ZHANG Lianzhen, LI Peng, FENG Xiao. New progress in grouting reinforcement theory of water-rich soft stratum in underground engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 47 -57 .
[5] XIA Kaiwen, XU Ying, CHEN Rong. Dynamic tests of rocks subjected to simulated deep underground environments[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 58 -75 .
[6] HONG Kairong. Study on rock breaking and wear of TBM hob in high-strength high-abrasion stratum[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 76 -85 .
[7] TAN Zhongsheng. Application experimental study of high-strength lattice girders with heat treatment in tunnel engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 86 -92 .
[8] CHEN Jianxun, LUO Yanbin. The stability of structure and its control technology for lager-span loess tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 93 -101 .
[9] JING Hongwen, YU Liyuan, SU Haijian, GU Jincai, YIN Qian. Development and application of catastrophic experiment system for water inrush in surrounding rock of deep tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 102 -110 .
[10] LI Tianbin, WU Chendi, MENG Lubo, GAO Meiben. Study on dynamic analysis and comprehensive warning method of tunnel collapse[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 111 -118 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn