Please wait a minute...
 
隧道与地下工程灾害防治  2025, Vol. 7 Issue (4): 86-95    DOI: 10.19952/j.cnki.2096-5052.2025.04.08
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
复杂地层泥水盾构排浆管内石渣运移全过程规律研究
于文端1,王涵2
1.中铁十四局集团有限公司, 山东 济南 250014;2.山东大学齐鲁交通学院, 山东 济南 250002
Study on the complete transport characteristics of muck in discharge pipe of slurry shields for complex strata
YU Wenduan1, WANG Han2
1. China Railway 14th Bureau Group Co., Ltd., Jinan 250014, Shandong, China;
2. School of Qilu Transportation, Shandong University, Jinan 250002, Shandong, China
下载:  PDF (12084KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为给排浆管设计优化和堵塞风险预测提供科学指导,本研究基于CFD-DEM耦合方法建立石渣在排浆管内运移的数值计算模型,通过颗粒沉降速度验证方法的准确性,系统探究管道流速v、泥浆浓度sc、管道倾角θ和石渣半径r对石渣运移特性的影响规律。研究结果表明:v的增加显著提高石渣速度,随着管道流速从2 m·s-1增加至5 m·s-1, 石渣的平均速度从0.56 m·s-1显著增加至3.53 m·s-1,而泥浆浓度对缓解堵塞风险的效果相对有限;管道倾角的增加会导致石渣在进入爬升段后平均速度突降,因此工程实践中应避免采用大角度倾角设计;小半径石渣的排出效率更高,而大半径石渣更易引发堵塞风险。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
于文端
王涵
关键词:  泥水盾构  排浆管堵塞  CFD-DEM  参数分析    
Abstract: To provide scientific guidance for optimizing pipe design and predicting blockage risks, this study first established a numerical simulation model for muck transport in discharge pipes based on the CFD-DEM coupling method. The accuracy of the model was validated by comparing the simulated particle settling velocity with experimental data. Subsequently, the effects of pipe flow velocity(v), slurry concentration(sc), pipe inclination angle(θ), and muck particle radius(r)on transport characteristics were systematically investigated. The results indicated that an increase in v significantly enhanced the average transport velocity of muck. Specifically, when v was raised from 2 m·s-1 to 5 m·s-1, the average velocity increased from 0.56 m·s-1to 3.53 m·s-1. In contrast, increasing sc demonstrated limited effectiveness in mitigating blockage risks. Moreover, larger pipe inclination angles(θ)led to a sudden decrease in the average transport speed upon the muck entering the ascending pipe segment, suggesting that steep inclination angles should be avoided in engineering practice. Furthermore, smaller muck exhibited higher transport efficiency, whereas larger ones posed a greater blockage risk.
Key words:  slurry shield    discharge pipe blockage    CFD-DEM    parameters analysis
发布日期:  2025-12-29     
中图分类号:  U458  
基金资助: 国家自然科学基金面上资助项目(52278403)
作者简介:  于文端(1984— ),男,山东临沂人,高级工程师,主要研究方向为盾构隧道稳定性. E-mail:155094130@qq.com
引用本文:    
于文端, 王涵. 复杂地层泥水盾构排浆管内石渣运移全过程规律研究[J]. 隧道与地下工程灾害防治, 2025, 7(4): 86-95.
YU Wenduan, WANG Han. Study on the complete transport characteristics of muck in discharge pipe of slurry shields for complex strata. Hazard Control in Tunnelling and Underground Engineering, 2025, 7(4): 86-95.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2025/V7/I4/86
[1] 陈健, 苏秀婷, 黄习习, 等. 大直径泥水盾构穿越敏感环境变形控制材料研发及控制参数研究[J]. 现代隧道技术, 2022, 59(4): 256-264. CHEN Jian, SU Xiuting, HUANG Xixi, et al. The development of deformation control materials for a large-diameter slurry shield passing through the sensitive environment and research on related control parameters[J]. Modern Tunnelling Technology, 2022, 59(4): 256-264.
[2] 于文端, 丁万涛, 王承震, 等. 泥浆和岩渣特性对泥水平衡盾构气垫舱岩渣排出规律影响研究[J]. 现代隧道技术, 2024,61(4): 192-201. YU Wenduan, DING Wantao, WANG Chengzhen, et al. Study on the influence of slurry and rock muck characteristics on rock muck discharge from the air cushion chamber of slurry balance shield machine[J]. Modern Tunnelling Technology, 2024, 61(4): 192-201.
[3] 于文端, 丁万涛, 王承震, 等. 基于CFD-DEM方法的泥水平衡盾构排屑效率影响因素敏感度[J]. 科学技术与工程, 2024, 24(19): 8052-8061. YU Wenduan, DING Wantao, WANG Chengzhen, et al. Sensitivity analysis of factors influencing the cuttings discharged ratio in slurry shield based on CFD-DEM method[J]. Science Technology and Engineering, 2024, 24(19): 8052-8061.
[4] 夏毅敏, 姚菁, 吴遁, 等. 泥水盾构水平直管内石碴起动速度研究[J]. 隧道建设(中英文), 2018,38(3): 392-398. XIA Yimin, YAO Jing, WU Dun, et al. Study of pickup velocity of pebbles in horizontal straight pipe of slurry shield[J]. Tunnel Construction, 2018, 38(3): 392-398.
[5] 李振, 邓朝辉, 李树忱, 等. 泥水盾构排浆管砾石沉积特性及对泥浆影响规律[J]. 岩土工程学报, 2025,47(4): 849-859. LI Zhen, DENG Chaohui, LI Shuchen, et al. Sedimentation characteristics of gravel in discharge pipe of slurry shield tunneling and its impact on slurry[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(4): 849-859.
[6] 王继红, 王树刚, 张腾飞, 等. 水平管道内冰浆流动阻力特性实验研究[J]. 哈尔滨工程大学学报, 2014, 35(2): 161-165. WANG Jihong, WANG Shugang, ZHANG Tengfei, et al. Experimental investigation into the properties of flowing resistance of ice slurry inside a horizontal pipeline[J]. Journal of Harbin Engineering University, 2014, 35(2): 161-165.
[7] 伍超. 泥水平衡盾构泥浆特性及输送性能研究[D]. 成都:西南交通大学, 2019: 44-46. WU Chao. Research on mud characteristics and transportation performance of slurry balance shield[D]. Chengdu:Southwest Jiaotong University, 2019: 44-46.
[8] 杨光, 樊至, 吴智, 等. 不同性质黏性土对泥浆渣土输送能力影响研究[J]. 交通科学与工程, 2021,37(3): 58-64. YANG Guang, FAN Zhi, WU Zhi, et al. Impact of clayproperties on transport ability of mud residue[J]. Journal of Transport Science and Engineering, 2021, 37(3): 58-64.
[9] 孙宇, 李兴高, 郭易东, 等. 砂卵石地层泥水盾构排浆管路渣石起动特性模型试验与仿真分析[J]. 岩土工程学报, 2024, 46(9): 1945-1955. SUN Yu, LI Xinggao, GUO Yidong, et al. Model tests and simulation analyses of starting characteristics of muck in slurry-discharge pipelines of slurry shield insandy pebble stratum[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(9): 1945-1955.
[10] 郭易东, 李兴高, 杨益, 等. 基于CFD-DEM方法的泥水盾构排浆管弯头沿程压力损失分析[J]. 现代隧道技术, 2021, 58(增刊1): 191-198. GUO Yidong, LI Xinggao, YANG Yi, et al. Analysis of pressure loss along the elbow of slurry discharge pipe of slurry shield based on CFD-DEM method[J]. Modern Tunnelling Technology, 2021, 58(Suppl.1): 191-198.
[11] 干聪豫, 方应冉, 刘泓志, 等. 复杂多变地层泥水盾构排浆管路振动特性分析[J]. 噪声与振动控制, 2023, 43(1): 275-280. GAN Congyu, FANG Yingran, LIU Hongzhi, et al. Analysis of vibration characteristics of slurry discharge pipelines of a slurry shield in complex and changeable stratums[J]. Noise and Vibration Control, 2023, 43(1): 275-280.
[12] 王雪晨, 方应冉, 李兴高, 等. 高磨蚀复合地层泥水盾构排浆管路磨损分析与优化[J]. 土木工程与管理学报, 2023, 40(3): 124-130. WANG Xuechen, FANG Yingran, LI Xinggao, et al. Analysis and optimization of slurry discharge pipeline wear of slurry shield in high abrasion composite stratum[J]. Journal of Civil Engineering and Management, 2023, 40(3): 124-130.
[13] 刘晓明, 李维, 黄川, 等. 基于CFD-DEM的盾构泥浆管道排渣特性参数影响规律研究[J]. 机床与液压, 2024, 52(1): 161-167. LIU Xiaoming, LI Wei, HUANG Chuan, et al. Study on the influence law of slag discharge characteristic parameters of shield mud pipeline based on CFD-DEM[J]. Machine Tool & Hydraulics, 2024, 52(1): 161-167.
[14] 万初一, 范祖相, 周岱, 等. 强迫振动下垂直管道固液两相流数值模拟研究[J]. 力学学报, 2024, 56(3): 586-596. WAN Chuyi, FAN Zuxiang, ZHOU Dai, et al. Numerical simulation research of solid-liquid two-phase flow in vertical pipe under forced vibration[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(3): 586-596.
[15] 童里, 李达, 李树忱, 等. 基于CFD-DEM耦合的泥水平衡盾构排浆管卵石滞排研究[J]. 山东大学学报(工学版), 2025, 55(2): 114-124. TONG Li, LI Da, LI Shuchen, et al. Research on pebble slagging stagnation of slurry balance shield drain pipe based on CFD-DEM coupling[J]. Journal of Shandong University(Engineering Science), 2025, 55(2): 114-124.
[16] LAUNDER B E, SPALDING D B. The numerical computation of turbulent flows[J]. Computer Methods in Applied Mechanics and Engineering, 1974, 3(2): 269-289.
[17] TSUJI Y, KAWAGUCHI T, TANAKA T. Discrete particle simulation of two-dimensional fluidized bed[J]. Powder Technology, 1993, 77(1): 79-87.
[18] 杨益, 李兴高, 李兴春, 等. 基于Herschel-Bulkley流变模型的盾构螺旋输送机保压性能[J]. 湖南大学学报(自然科学版), 2021, 48(11): 195-204. YANG Yi, LI Xinggao, LI Xingchun, et al. Pressure maintaining performance of shield screw conveyor based on Herschel-Bulkley rheological model[J]. Journal of Hunan University(Natural Sciences), 2021, 48(11): 195-204.
[19] 王媛, 刘韬, 刘四进, 等. 高渗透砂层含核桃壳泥浆特性及渗透成膜试验研究[J]. 岩土工程学报, 2024, 46(11): 2256-2264. WANG Yuan, LIU Tao, LIU Sijin, et al. Rheological properties and filter-cake formation performances of slurry containing walnut shell in high-permeability sand stratum[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(11): 2256-2264.
[20] 郭文静. 越海泥水盾构泥浆三维渗透成膜特征及机理研究[D]. 济南:山东大学, 2024: 19-20. GUO Wenjing. Research on the characteristics and mechanism of three dimensional permeation film formation of mud in cross sea mud water shield tunneling[D]. Jinan: Shandong University, 2024: 19-20.
[21] 姚鹏, 王远, 冒刘鹏, 等. CFD-DEM模型最优网格尺寸的理论推证[J]. 泥沙研究, 2023, 48(5): 1-7. YAO Peng, WANG Yuan, MAO Liupeng, et al. Theoretical validation on the optimal mesh size of CFD-DEM model[J]. Journal of Sediment Research, 2023, 48(5): 1-7.
[22] 商成顺. 基于粗粒化理论的工程尺度DEM-CFD流固耦合模拟方法及应用[D]. 济南:山东大学, 2021: 73-75. SHANG Chengshun. Engineering scale DEM-CFD fluid structure coupling simulation method and application based on coarse-grained theory[D]. Jinan: Shandong University, 2021: 73-75.
[1] 宗军良, 饶倩, 王祺, 禹海涛. 地面出入式盾构隧道动力响应的数值模拟[J]. 隧道与地下工程灾害防治, 2023, 5(3): 63-70.
[2] 石宗涛. 济南黄河隧道泥水盾构开挖面稳定性分析[J]. 隧道与地下工程灾害防治, 2022, 4(1): 71-77.
[3] 陈健,薛峰,赵合全,房中玉. 大直径泥水盾构环流系统管路压力损失及携渣特性[J]. 隧道与地下工程灾害防治, 2020, 2(2): 83-91.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn