Abstract: To comprehensively assess the overall deformation of tunnel cross-sections, a deformation monitoring method based on 3D laser scanning technology was applied in a large-deformation tunnel project. According to the principles of 3D laser deformation monitoring and point cloud processing, the monitoring process was divided into four stages: pre-operation preparation, point cloud data acquisition, point cloud data processing, and deformation analysis. The standard workflow for tunnel deformation monitoring using 3D laser scanning was systematically established. Specific field operation procedures were adaptively modified according to the environmental characteristics of large-deformation tunnels. The monitoring results provided comprehensive representations including deformation nephograms, cross-sectional profiles, and deformation time-history curves. These outputs enabled: rapid evaluation of overall deformation within monitored sections, visual identification of high-deformation zones, assessment of deformation impacts on tunnel clearances, and quantitative analysis of deformation values and convergence trends at specific locations, demonstrating holographic characteristics. The 3D laser deformation monitoring technique shows significant potential for widespread application. However, relevant technical specifications and operational standards should be established in current regulations to improve the technical level of tunnel deformation monitoring.
李行. 三维激光扫描在大变形隧道中的变形监测应用[J]. 隧道与地下工程灾害防治, 2025, 7(4): 115-123.
LI Hang. Application of 3D laser scanning for deformation monitoring in large deformation tunnels. Hazard Control in Tunnelling and Underground Engineering, 2025, 7(4): 115-123.
[1] 陶玉敬, 袁传保, 王茂靖, 等. 成兰铁路跃龙门隧道深埋越岭段大变形原因分析研究[J]. 现代隧道技术, 2023, 60(4): 229-236. TAO Yujing, YUAN Chuanbao, WANG Maojing, et al. Analysis on causes of large deformation in the deep-buried mountain ridge section of Yuelongmen Tunnel on Chengdu-Lanzhou Railway[J]. Modern Tunnelling Technology, 2023, 60(4): 229-236. [2] 谭忠盛, 赵金鹏, 张宝瑾. 超大埋深软岩隧道大变形机理及控制技术研究——以滇藏铁路丽香线哈巴雪山隧道为例[J]. 隧道建设(中英文), 2024, 44(12): 2307-2315. TAN Zhongsheng, ZHAO Jinpeng, ZHANG Baojin. Mechanism and control of large deformations in super-deep soft rock tunnels: a case study of Haba Snow mountain Tunnel on Lijiang-Shangri-La line of Yunnan-Xizang Railway[J]. Tunnel Construction, 2024, 44(12): 2307-2315. [3] 靳亚峰, 周杰彬, 周威锦. 川西地区极破碎软岩隧道大变形机制分析及控制技术——以查针梁子隧道工程为例[J]. 隧道建设(中英文), 2024, 44(增刊1): 344-354. JIN Yafeng, ZHOU Jiebin, ZHOU Weijin. Analysis of large deformation mechanism and control technology of extremely broken soft rock tunnel in western Sichuan: taking Chazhenliangzi Tunnel Project as an example[J]. Tunnel Construction, 2024, 44(Suppl.1): 344-354. [4] 单超, 钟宇健, 姚崇凯, 等. 大跨软弱围岩浅埋隧道偏压段横向偏移规律测试[J]. 公路, 2019, 64(8): 214-220. SHAN Chao, ZHONG Yujian, YAO Chongkai, et al. Lateral deviation law for bias section of shallow buried tunnel with large span and weak surrounding rock[J]. Highway, 2019, 64(8): 214-220. [5] 王明江, 徐祖宏, 黄国林, 等. 浅埋大偏压六车道连拱隧道初支换拱处治技术[J]. 地下空间与工程学报, 2023, 19(增刊1): 478-485. WANG Mingjiang, XU Zuhong, HUANG Guolin, et al. Treatment technology of replacing arch with initial support in shallow-buried six-lane multi-arch tunnel with large eccentric pressure[J]. Chinese Journal of Underground Space and Engineering, 2023, 19(Suppl.1): 478-485. [6] 白荷军, 路鑫. 黄河上游断裂带小净距偏压浅埋软岩隧道变形控制分析[J]. 公路, 2024, 69(9): 401-407. BAI Hejun, LU Xin. Deformation control analysis of shallow soft rock tunnel with small clear distance and eccentric pressure in the fault zone of the upper reaches of the Yellow River[J]. Highway, 2024, 69(9): 401-407. [7] 韦征, 俞旻韬, 周臻. 隧道三维激光扫描检测及监测精度分析[J]. 现代隧道技术, 2020, 57(增刊1): 1249-1253. WEI Zheng, YU Mintao, ZHOU Zhen. Three-dimensional laser scanning detection and monitoring accuracy analysis of tunnel[J]. Modern Tunnelling Technology, 2020, 57(Suppl.1): 1249-1253. [8] 李振国, 王林, 韦征, 等. 三维激光扫描仪的精度评价分析 [J]. 浙江工业大学学报, 2023, 51(1): 27-31. LI Zhenguo, WANG Lin, WEI Zheng, et al. Accuracy evaluation and analysis of 3D laser scanner [J]. Journal of Zhejiang University of Technology, 2023, 51(1): 27-31. [9] 韦征, 曾庆谊, 周建强, 等. 基于概率密度的隧道三维激光扫描监测方法[J]. 铁道工程学报, 2023, 40(2): 66-72. WEI Zheng, ZENG Qingyi, ZHOU Jianqiang, et al. Tunnel 3D laser scanning monitoring method based on probability density[J]. Journal of Railway Engineering Society, 2023, 40(2): 66-72. [10] 赵宁宁, 王嘉伟, 芦斌, 等. 光电测量方法在盾构隧道收敛监测中的可行性研究 [J]. 铁道标准设计, 2022, 66(12): 111-114. ZHAO Ningning, WANG Jiawei, LU Bin, et al. Feasibility study of opt electric measurement methods in convergence monitoring of shield metro tunnel [J]. Railway Standard Design, 2022, 66(12): 111-114. [11] 戴军, 王建军, 李东锋, 等. 三维激光扫描辅助隧道大变形控制研究 [J]. 铁道标准设计, 2024, 68(7): 146-153. DAI Jun, WANG Jianjun, LI Dongfeng, et al. 3D laser scanning assisted tunnel large deformation control [J]. Railway Standard Design, 2024, 68(7): 146-153. [12] 胡国金, 夏才初, 倪世昊, 等. 激光扫描与传统测量方法在隧道收敛的对比验证[J]. 城市轨道交通研究, 2025, 28(3): 103-107. HU Guojin, XIA Caichu, NI Shihao, et al. Comparative validation of laser scanning and traditional measurement methods for tunnel convergence[J]. Urban Mass Transit, 2025, 28(3): 103-107. [13] 李涛, 仇文革, 程云建, 等. 基于全息变形监测的隧道支护评估体系研究[J]. 地下空间与工程学报, 2020, 16(2): 583-590. LI Tao, QIU Wenge, CHENG Yunjian, et al. Study on tunnel support evaluation system based on holographic deformation monitoring[J]. Chinese Journal of Underground Space and Engineering, 2020, 16(2): 583-590. [14] 祁文睿, 高永涛. 公路隧道穿越软弱破碎围岩综合施工及监测技术研究[J]. 公路交通科技, 2021, 38(11): 88-96. QI Wenrui, GAO Yongtao. Study on comprehensive construction and monitoring technology of highway tunnel crossing weak and fractured surrounding rock[J]. Journal of Highway and Transportation Research and Development, 2021, 38(11): 88-96. [15] 潘东峰, 杨超, 吴一同, 等. 利用TLS技术进行地铁隧道断面提取及变形监测分析[J]. 测绘通报, 2022(4): 130-133. PAN Dongfeng, YANG Chao, WU Yitong, et al. Section extraction and deformation monitoring analysis of metro tunnel using TLS technology[J]. Bulletin of Surveying and Mapping, 2022(4): 130-133.