Please wait a minute...
 
隧道与地下工程灾害防治  2025, Vol. 7 Issue (4): 124-134    DOI: 10.19952/j.cnki.2096-5052.2025.04.12
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
大断面竖井二次衬砌满堂支架设计及稳定性分析
张小龙1,郭明耀1,向宇2*
1.上海市隧道工程轨道交通设计研究院, 上海 200235;2.北京科技大学资源与安全工程学院, 北京 100083
Design and stability analysis of full-hall scaffolding for secondary lining in large-section shafts
ZHANG Xiaolong1, GUO Mingyao1, XIANG Yu2*
1. Shanghai Tunnel Engineering Rail Transit Design and Research Institute, Shanghai 200235, China;
2. School of Resource and Safety Engineering, University of Science and Technology Beijing, Beijing 100083, China
下载:  PDF (14506KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对大断面、高埋深竖井二次衬砌施工中临时支护体系设计缺乏系统研究的问题,本研究以深圳市下坪场3号竖井为工程背景,开展了满堂支架法在深竖井环境下的可行性与稳定性研究。基于规范化设计依据,完成了针对深竖井的支架构造体系方案和加固要点;构建了盘扣式钢管支架的三维有限元模型,考虑混凝土侧压、结构自重及施工荷载等典型工况,开展杆件应力、位移及线性屈曲模态分析,并结合监测数据验证了模型准确性。研究结果表明:在最大施工荷载工况下,立杆最大轴向应力为34.72 MPa,横杆节点最大位移量为21.17 mm,支架各模态临界荷载系数均大于4,符合规范规定的安全储备标准。研究成果在方法与工程应用上具有创新性,既填补了满堂支架在深竖井情形下受力与稳定性研究的空白,又为类似地下工程中大断面临时支护的设计与推广提供了技术参考和工程经验。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张小龙
郭明耀
向宇
关键词:  大断面竖井  满堂支架设计  数值模拟  稳定性分析  施工技术    
Abstract: Aiming at the lack of systematic research on temporary support system design for secondary lining in large-section and deep shafts, this study investigated the feasibility and stability of the full-hall scaffolding method, using Shaft No. 3 of the Xiaping drainage system in Shenzhen as the engineering case. Based on standardized design codes, a scaffolding scheme and key reinforcement measures suitable for deep shafts were developed. A three-dimensional finite-element model of the disk-coupler steel-tube scaffold was established in MIDAS/CIVIL, incorporating typical construction load cases including concrete lateral pressure, structural self-weight, and operational loads. Member stresses, displacements, and linear buckling modes were analyzed. The model accuracy was validated using monitoring data. Results showed that under the maximum construction load, the vertical post exhibits a maximum axial stress of 34.72 MPa, the maximum displacement at the horizontal joint reaches 21.17 mm, and all modal critical load factors exceeded 4, satisfying the safety reserve requirements specified in current codes. The findings demonstrated methodological and practical innovations: the study not only filled the gap in research on the mechanical behavior and stability of full-hall scaffolding in deep-shaft conditions, but also provided technical references and engineering experience for the design and wider application of large-section temporary support systems in underground construction.
Key words:  large section shaft    design of full-hall scaffolding    numerical simulation    stability analysis    construction technology
发布日期:  2025-12-29     
中图分类号:  U45  
  TU92  
基金资助: 国家自然科学基金资助项目(51874014)
作者简介:  张小龙(1988— ),男,内蒙古乌兰察布人,工程师,博士,主要研究方向为岩土、隧道及轨道交通设计. E-mail: zhangxiaolong_vici@163.com. *通信作者简介:向宇(2001— ),男,湖南怀化人,硕士研究生,主要研究方向为岩土工程支护. E-mail:M202320125@xs.ustb.edu.cn
引用本文:    
张小龙, 郭明耀, 向宇. 大断面竖井二次衬砌满堂支架设计及稳定性分析[J]. 隧道与地下工程灾害防治, 2025, 7(4): 124-134.
ZHANG Xiaolong, GUO Mingyao, XIANG Yu. Design and stability analysis of full-hall scaffolding for secondary lining in large-section shafts. Hazard Control in Tunnelling and Underground Engineering, 2025, 7(4): 124-134.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2025/V7/I4/124
[1] 刘志强, 陈湘生, 蔡美峰, 等. 我国大直径钻井技术装备发展的挑战与思考[J]. 中国工程科学, 2022, 24(2): 132-139. LIU Zhiqiang, CHEN Xiangsheng, CAI Meifeng, et al. Challenges and thoughts on the development of large-diameter drilling technology and equipment[J]. Strategic Study of CAE, 2022, 24(2): 132-139.
[2] 何贞俊, 王斌, 杨聿, 等. 市政排水系统中竖井研究及应用进展[J]. 中国给水排水, 2017, 33(10): 49-53. HE Zhenjun, WANG Bin, YANG Yu, et al. Review on vertical shaft in urban wastewater drainage system[J]. China Water & Wastewater, 2017, 33(10): 49-53.
[3] 毛锦波, 赵红刚, 韩强, 等. 竖井地面预注浆帷幕安全厚度研究及其在隧道通风井中应用: 以天山胜利隧道4号通风竖井为例[J]. 隧道建设(中英文), 2024, 44(2): 266-273. MAO Jinbo, ZHAO Honggang, HAN Qiang, et al. Safe thickness of pregrouting curtain for vertical shaft ground and its application in tunnel ventilation shaft: a case study of No. 4 ventilation shaft of Tianshan Shengli Tunnel[J]. Tunnel Construction, 2024, 44(2): 266-273.
[4] 赵兴东, 李洋洋, 张姝婧, 等. 超深井筒开挖扰动应力响应特征分析[J]. 隧道与地下工程灾害防治, 2020, 2(4): 19-28. ZHAO Xingdong, LI Yangyang, ZHANG Shujing, et al. Analysis and application of disturbance stress reaction mechanism of surrounding rock during sinking ultra-deep shaft[J]. Hazard Control in Tunnelling and Underground Engineering, 2020, 2(4): 19-28.
[5] 张卜, 姬若愚, 钟紫蓝, 等. 穿越岩土交界面竖井结构水平地震损伤破坏模式[J]. 隧道与地下工程灾害防治, 2023, 5(3):27-40. ZHANG Bu, JI Ruoyu, ZHONG Zilan, et al. The damage and failure mode of shaft structures crossing the geotechnical interface under the horizontal excitation of earthquake motion[J]. Hazard Control in Tunnelling and Underground Engineering, 2023, 5(3):27-40.
[6] 赵东平, 吴楠, 李华, 等. 隧道超深竖井设计施工技术研究现状及展望[J]. 铁道勘察, 2022, 48(3): 10-16. ZHAO Dongping, WU Nan, LI Hua, et al. Research status and prospect of design and construction technology of ultra-deepshaft for tunnel[J]. Railway Investigation and Surveying, 2022, 48(3): 10-16.
[7] 冷希乔, 严金秀, 韩瑀萱. 公路隧道深大竖井设计及施工方法探讨[J]. 公路, 2019, 64(8): 221-225. LENG Xiqiao, YAN Jinxiu, HAN Yuxuan. Exploration and discussion on deformation law and construction method of deep shaft of highway tunnel[J]. Highway, 2019, 64(8): 221-225.
[8] 徐浚. 麦麦高铁超宽混凝土箱梁桥构造与施工[J]. 混凝土, 2019(9): 142-145. XU Jun. Structure of and construction method to super-wide concrete box girder bridge of mecca to medina high speed railway[J]. Concrete, 2019(9): 142-145.
[9] 李仁飞. 某公路桥梁满堂支架现浇箱梁施工技术分析[J]. 交通科技与管理, 2024, 5(7):88-90. LI Renfei. Analysis of construction technology of cast-in-place box girder of a highway bridge with full-tower support[J]. Transportation Technology and Management, 2024, 5(7):88-90.
[10] 冯晓楠, 刘朵, 张建东, 等. 碗扣式与盘扣式钢管支架综合性能对比分析[J]. 施工技术, 2018, 47(2): 73-76. FENG Xiaonan, LIU Duo, ZHANG Jiandong, et al. Comprehensive performance contrast of cuplok and disk lock steel tubular scaffold[J]. Construction Technology, 2018, 47(2): 73-76.
[11] CHANDRANGSU T, RASMUSSEN K J R. Structural modelling of support scaffold systems[J]. Journal of Constructional Steel Research, 2011, 67(5): 866-875.
[12] MITOULIS S A, TEGOS I A, STYLIANIDIS K C. Cost-effectiveness related to the earthquake resisting system of multi-span bridges[J]. Engineering Structures, 2010, 32(9): 2658-2671.
[13] TEGOU S D, MITOULIS S A, TEGOS I A. An unconventional earthquake resistant abutment with transversely directed R/C walls[J]. Engineering Structures, 2010, 32(11): 3801-3816.
[14] 章贝贝, 樊训良, 林京京, 等. 基于有限元的盘扣式钢管满堂支架稳定性研究分析[J]. 地基处理, 2020, 2(6): 492-496. ZHANG Beibei, FAN Xunliang, LIN Jingjing, et al. Stability of full-supported disc buckle steel pipe based on finite element[J]. Chinese Journal of Ground Improvement, 2020, 2(6): 492-496.
[15] 郭子毅. 盘扣式满堂支架稳定性分析及安全风险评估研究[D]. 河北:河北工程大学, 2022: 68-70. GUO Ziyi. Study on stability analysis and safety risk assessment of disc-buckled full support[D]. Hebei:Hebei University of Engineering, 2022: 68-70.
[16] 孙秋月. 碗扣式钢管满堂支架力学性能及稳定性试验研究[D]. 西安:长安大学,2018: 70-72. SUN Qiuyue. Experimental investigation on the mechanical behaviour and stability of full cuplock steel tubular scaffolding[D]. Xi'an: Chang'an University, 2018: 70-72.
[17] 郗磊. 软弱地基上满堂式支架施工与地基沉降量预估方法探索现状[J]. 科技与创新, 2023(5): 95-97. XI Lei. Present situation of full-style support construction on soft foundation and exploration of foundation settlement prediction method[J]. Science and Technology & Innovation, 2023(5): 95-97.
[18] 朱小京, 起朝鲜, 邹怀秀, 等. 现浇箱梁满堂支架湿软地基处理与承载力验算[J]. 施工技术, 2016, 45(增刊1): 311-313. ZHU Xiaojing, QI ChaoXian, ZOU Huaixiu, et al. Wet-soft foundation treatment and bearing capacity checking for construction of cast-in-situ box beams supported by full framing[J]. Construction Technology, 2016, 45(Suppl.1): 311-313.
[19] 谢锐. 渐变大断面地铁隧道二衬施工技术[J]. 建筑技术开发,2021,48(19):33-35. XIE Rui. Construction technology of secondary lining of metro tunnel with gradual change and large section[J]. Building Technology Development, 2021, 48(19):33-35.
[20] 祁海. 地铁车站满堂碗扣式支架门洞设计与施工[J]. 智能城市应用, 2022(5): 21-24. QI Hai. Design and construction of full hall bowl buckle support door openings in metro stations[J]. Smart City Application, 2022(5): 21-24.
[21] 吕秋影. 泄洪系统深大渐变断面竖井二次衬砌施工技术[J]. 建筑技术开发, 2024, 51(5): 43-45. LYU Qiuying. Discussion on construction technology of vertical shaft lining for deep and large gradient sections in flood discharge systems[J]. Building Technology Development, 2024, 51(5): 43-45.
[22] 刘书昊. 现浇井筒式地下立体车库逆作施工研究[D]. 石家庄:石家庄铁道大学,2024: 88-91. LIU Shuhao. Research on reverse construction for cast-in-place cylindrical underground automated parking garage[D]. Shijiazhuang: Shijiazhuang Tiedao Univeristy, 2024: 88-91.
[23] 黄剑, 李伟, 陈鑫, 等. 模块化可移动支架施工技术的研究与应用[J]. 工程建设与设计, 2022(17): 173-175. HUANG Jian, LI Wei, CHEN Xin, et al. Research and application of modular movable support construction technology[J]. Construction & Design for Engineering, 2022(17): 173-175.
[24] 中华人民共和国住房和城乡建设部. 建筑施工承插型盘扣式钢管脚手架安全技术标准:JGJ/T 231—2021[S].北京:中国建筑工业出版社, 2021: 9-13.
[25] 中华人民共和国住房和城乡建设部. 建筑结构荷载规范: GB 50009—2012[S]. 北京: 中国建筑工业出版社, 2012: 8-12.
[26] 中华人民共和国住房和城乡建设部. 建筑施工临时支撑结构技术规范: JGJ 300—2013[S]. 北京: 中国建筑工业出版社, 2014: 21-28.
[27] BŁAZIK-BOROWA E, ROBAK A, PIENKO M, et al. The measurement of axial forces in scaffolding standards[J]. Measurement, 2023, 223: 113770.
[28] 中华人民共和国住房和城乡建设部. 建筑施工模板安全技术规范:JGJ 162—2023[S]. 北京:中国建筑工业出版社,2023: 13-14.
[29] 中华人民共和国住房和城乡建设部. 建筑施工扣件式钢管脚手架安全技术规范:JGJ 166—2016[S].北京:中国建筑工业出版社, 2016: 13-19.
[1] 靳高汉,高成路,周宗青,涂汉臣,王迪军,张志良,袁泉,李萧翰. 多层地铁车站水淹过程时空演化特征数值模拟研究[J]. 隧道与地下工程灾害防治, 2025, 7(4): 53-64.
[2] 王雁冰, 张芳平, 李守业, 彭会椿, 雷振. 三向围压与液氧爆破荷载耦合作用下红砂岩损伤破裂特征研究[J]. 隧道与地下工程灾害防治, 2025, 7(3): 58-71.
[3] 金阳,姚颖康,刘汶,姬付全,曹昂. 不耦合偏心装药孔壁压力与岩体动态响应特性数值模拟研究[J]. 隧道与地下工程灾害防治, 2025, 7(3): 83-92.
[4] 郭建光,王星,董唱唱,薛永斌,王双庆,赵宏硕,王涵,王文虎. 浆液时效性与管片摩擦作用下管片上浮研究[J]. 隧道与地下工程灾害防治, 2025, 7(2): 73-80.
[5] 丁建奇, 王陈成, 朱向闪, 张翔, 傅刚, 徐敬民. 大直径隧道施工对临近建筑的作用机制[J]. 隧道与地下工程灾害防治, 2025, 7(1): 22-34.
[6] 苟晓军, 赵金泉, 季玮, 花晓鸣, 范占锋. 隧道不良地质构造雷达特征数值模拟[J]. 隧道与地下工程灾害防治, 2025, 7(1): 68-82.
[7] 赵旭明, 雷文君, 蔡明庆, 邰传民, 张林华. 观光隧道烟气流动特性研究[J]. 隧道与地下工程灾害防治, 2025, 7(1): 90-98.
[8] 王圣涛, 陈鹏涛, 刘爱武, 孙文昊, 张俊儒. 特大跨连续变断面隧道双导洞超前-中柱反向扩挖的施工力学行为[J]. 隧道与地下工程灾害防治, 2024, 6(4): 1-11.
[9] 李启弟, 梁庆国, 周仁, 杨家伟, 蔡遵乐. 甘青隧道初始地应力场分析及岩爆预测[J]. 隧道与地下工程灾害防治, 2024, 6(4): 50-60.
[10] 赵泽乾, 朱旻, 包小华, 杨春山, 陈湘生. 下穿码头危化品堆场的超大直径盾构隧道抗爆性能评估方法[J]. 隧道与地下工程灾害防治, 2024, 6(4): 61-71.
[11] 杨立,夏增选,娄文杰,刘杉,李奉庭,武科. 山区深埋公路隧道穿越断层破碎带施工稳定性[J]. 隧道与地下工程灾害防治, 2024, 6(3): 32-42.
[12] 田瑞端,莫冠旺,李响. 超大断面扁平结构隧道矿山法超欠挖优化控制研究[J]. 隧道与地下工程灾害防治, 2024, 6(2): 84-98.
[13] 刘向阳,罗兵兵,吴静,张学富,黄耀明,李林杰. 高地温施工隧道冰块与通风组合降温效果对比研究[J]. 隧道与地下工程灾害防治, 2024, 6(2): 66-75.
[14] 闫治国, 王紫锐, 沈奕, 刘康. 碳氢曲线下大直径盾构隧道结构热力特性[J]. 隧道与地下工程灾害防治, 2024, 6(2): 25-36.
[15] 彭益, 张文, 王汉勋, 张彬, 孙哲. 某海岛地下水封油库渗流场数值模拟[J]. 隧道与地下工程灾害防治, 2024, 6(1): 94-104.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn