Please wait a minute...
 
隧道与地下工程灾害防治  2022, Vol. 4 Issue (4): 44-51    DOI: 10.19952/j.cnki.2096-5052.2022.04.06
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
限阻耗能型支护在大变形双线铁路隧道中的应用
戴军1,杨鑫1,王建军1,仇文革2,3,朱麒3*
1.中国水利水电第三工程局有限公司, 陕西 西安 710024;2.西南交通大学交通隧道工程教育部重点试验室, 四川 成都 610031;3.成都天佑智隧科技有限公司, 四川 成都 610031
Application of support resistant limiting damper in large-section double-track railway tunnel
DAI Jun1, YANG Xing1, WANG Jianjun1, QIU Wenge2,3, ZHU Qi3*
1. China Sinohydro Bureau 3 Co., Ltd., Xi'an 710024, Shaanxi, China;
2. Key Laboratory of Traffic Tunnel Engineering of Ministry of Education, Southwest Jiaotong University, Chengdu 610031, Sichuan, China;
3. Chengdu Tianyou Tunnel Key Technology Co., Ltd., Chengdu 610031, Sichuan, China
下载:  PDF (7676KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为解决中老铁路沙嫩山二号隧道双线段大变形问题,引入限阻耗能型支护设计原理,从合理利用围岩峰后承载能力的角度出发,设计符合现场工况的限阻耗能型支护方案。结合试验段的初支工作状态、结构变形及内力监测结果进行综合分析,验证采用限阻耗能支护结构治理炭质板岩地层隧道大变形的合理性。结果表明:隧道开挖后,系统能量主要通过围岩塑性应变能耗散,支护耗散的能量是有限的,若能充分利用围岩的塑性变形能力,通过围岩自身耗散能量,有利于完成能量的守恒与转换,从而降低围岩压力;限阻耗能型支护属于受压屈服型控制体系,适用于受形变压力控制的小偏心受压环境,在降低后的围岩压力下辅助围岩在弹塑性状态下耗散能量而不破坏;限阻耗能型支护在沙嫩山二号隧道双线段得到成功应用,相比“强支硬顶”,大幅度降低了围岩压力,在不加强初支参数的情况下避免了初支开裂、钢架屈曲等问题,在保证安全的前提下提高了工程的经济性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
戴军
杨鑫
王建军
仇文革
朱麒
关键词:  大变形隧道  形变压力  小偏心受压  限阻耗能型支护  能量释放    
Abstract: In order to solve the large deformation problem of Shanenshan No.2 Tunnel of the China-Lao's Railway, the design principle of the support resistant limiting damper(SRLD)was introduced, and the energy-consuming support scheme with the SRLD was designed according to the field working conditions from the point of rational utilization of the load-bearing capacity behind the peak of the surrounding rock. Based on the comprehensive analysis of the working state, structural deformation and internal force monitoring results of the primary support of the test section, the rationality of using the SRLD to treat the tunnel with carbonaceous SLATE stratum was verified. The results showed that after tunnel excavation, the system energy was dissipated mainly through the plastic strain energy of surrounding rock, while the energy dissipated by support was limited. Therefore, if the plastic deformation ability of surrounding rock could be fully utilized and the energy could be dissipated by surrounding rock itself, the energy conservation and conversion could be accomplished, thus reducing the pressure of surrounding rock. The SRLD was a pressure yielding control system, suitable for small eccentric pressure environments controlled by deformation pressure, which assised the surrounding rock to dissipate energy in an elastic-plastic state under reduced surrounding rock pressure, without damage. The SRLD was successfully applied in the double-lane section of Shannon Hill Tunnel No. 2, which significantly reduced the pressure on the surrounding rock compared to the “strong support and hard roof”, and avoided problems such as cracking of the initial support and buckling of the steel frame without strengthening the initial support parameters, thus improving the economy of the project while ensuring safety.
Key words:  large deformation tunnel    deformation pressure    small eccentric compression    SRLD    energy release
收稿日期:  2022-06-30      修回日期:  2022-08-25      发布日期:  2022-12-20     
中图分类号:  U25  
基金资助: 基金项目:国家自然科学基金重大资助项目(71942006)
通讯作者:  朱麒(1997— ),男,四川成都人,硕士研究生,主要研究方向为隧道工程.    E-mail:  zhuqi@my.swjtu.edu.com
作者简介:  戴军(1977— ),男,湖北荆州人,高级工程师,主要研究方向为企业管理. E-mail:326158753@qq.com.
引用本文:    
戴军, 杨鑫, 王建军, 仇文革, 朱麒. 限阻耗能型支护在大变形双线铁路隧道中的应用[J]. 隧道与地下工程灾害防治, 2022, 4(4): 44-51.
DAI Jun, YANG Xing, WANG Jianjun, QIU Wenge, ZHU Qi. Application of support resistant limiting damper in large-section double-track railway tunnel. Hazard Control in Tunnelling and Underground Engineering, 2022, 4(4): 44-51.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2022/V4/I4/44
[1] 徐旌, 张猛, 唐娇. 中老铁路: 高质量共建“一带一路”的标志性工程[J]. 云南地理环境研究, 2021, 33(6): 67-72. XU Jing, ZHANG Meng, TANG Jiao. China-Laos railway: a landmark project of high-quality Belt and Road cooperation[J]. Yunnan Geographic Environment Research, 2021, 33(6): 67-72.
[2] 郭新新, 朱安龙, 王万平, 等. 高应力炭质板岩隧道大变形特征及其机理分析[J]. 隧道与地下工程灾害防治, 2021, 3(4): 29-39. GUO Xinxin, ZHU Anlong, WANG Wanping, et al. Large deformation characteristics and mechanism analysis of high-stress carbonaceous slate tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2021, 3(4): 29-39.
[3] 田四明, 赵勇, 石少帅, 等. 中国铁路隧道建设期典型灾害防控方法现状、问题与对策[J]. 隧道与地下工程灾害防治, 2019, 1(2): 24-48. TIAN Siming, ZHAO Yong, SHI Shaoshuai, et al. The status, problems and countermeasures of typical disaster prevention and control methods during the construction period of Chinese railway tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(2): 24-48.
[4] 关宝树, 赵勇. 软弱围岩隧道施工技术[M]. 北京: 人民交通出版社, 2011.
[5] 仇文革, 黄海昀, 闫飞跃, 等. 基于能量原理的上覆饱水砂层隧道突水灾变[J]. 隧道与地下工程灾害防治, 2021, 3(1): 1-11. QIU Wenge, HUANG Haiyun, YAN Feiyue, et al. A disaster with water inrush based on energy theorem in tunnels under saturated sandy stratum[J]. Hazard Control in Tunnelling and Underground Engineering, 2021, 3(1): 1-11.
[6] 刘晓杰, 梁庆国, 刘传新, 等. 富水深埋黄土隧道变形规律及控制措施[J]. 隧道与地下工程灾害防治, 2021, 3(2): 23-32. LIU Xiaojie, LIANG Qingguo, LIU Chuanxin, et al. Deformation laws and control measures of deep-buried loess tunnel with abundant water[J]. Hazard Control in Tunnelling and Underground Engineering, 2021, 3(2): 23-32.
[7] 宋战平, 刘彦龙, 张玉伟. 黄土隧道深浅埋界限划分研究现状及展望[J]. 隧道与地下工程灾害防治, 2021, 3(2): 1-15. SONG Zhanping, LIU Yanlong, ZHANG Yuwei. Research and prospect of demarcation of deep and shallow buried in loess tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2021, 3(2): 1-15.
[8] 雷升祥, 赵伟. 软岩隧道大变形环向让压支护机制研究[J]. 岩土力学, 2020, 41(3): 1039-1047. LEI Shengxiang, ZHAO Wei. Study on mechanism of circumferential yielding support for soft rock tunnel with large deformation[J]. Rock and Soil Mechanics, 2020, 41(3): 1039-1047.
[9] 孙钧, 江宇, 汪波, 等. 高地应力软岩隧洞挤压型大变形的非线性流变属性及采用让压支护的工程整治研究[J]. 隧道建设(中英文), 2021, 41(10): 1627-1633. SUN Jun, JIANG Yu, WANG Bo, et al. Nonlinear rheological properties and yielding support technology for large squeezing deformation of soft rock tunnel with high ground stress[J]. Tunnel Construction, 2021, 41(10): 1627-1633.
[10] 张传庆,吕浩安,刘小岩,等.隧道新型恒阻让压装置的工作机制研究[J]. 岩土力学, 2020, 41(12): 4045-4053. ZHANG Chuanqing, LÜ Haoan, LIU Xiaoyan, et al. Mechanism research of a new constant resistance yielding device for tunnels[J]. Rock and Soil Mechanics, 2020, 41(12): 4045-4053.
[11] 王刚. 软弱围岩隧道变形机理与控制的能量方法 [D]. 成都:西南交通大学,2019.
[12] 王建宇, 胡元芳, 刘志强. 高地应力软弱围岩隧道挤压型变形和可让性支护原理[J]. 现代隧道技术, 2012, 49(3): 9-17. WANG Jianyu, HU Yuanfang, LIU Zhiqiang. Tunneling in squeezing ground with yielding supports[J]. Modern Tunnelling Technology, 2012, 49(3): 9-17.
[13] 周宏伟, 谢和平, 左建平. 深部高地应力下岩石力学行为研究进展[J]. 力学进展, 2005, 35(1): 91-99. ZHOU Hongwei, XIE Heping, ZUO Jianping. Developments in researches on mechanical behaviors of rocks under the condition of high ground pressure in the depths[J]. Advances in Mechanics, 2005, 35(1): 91-99.
[14] WALSH J B. Energy changes due to mining[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1977, 14(1): 25-33.
[15] CANTIENI L, ANAGNOSTOU G. The interaction between yielding supports and squeezing ground[J]. Tunnelling and Underground Space Technology, 2009, 24(3): 309-322.
[16] 仇文革, 王刚, 龚伦, 等. 一种适应隧道大变形的限阻耗能型支护结构研发与应用[J]. 岩石力学与工程学报, 2018, 37(8): 1785-1795. QIU Wenge, WANG Gang, GONG Lun, et al. Research and application of resistance-limiting and energy-dissipating support in large deformation tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(8): 1785-1795.
[17] 管晓军, 李畅, 仇文革, 等. 深埋老黄土隧道围岩劣化对支护受力影响分析[J]. 隧道建设(中英文), 2019, 39(11): 1806-1814. GUAN Xiaojun, LI Chang, QIU Wenge, et al. Influence of surrounding rock deterioration on supporting force of deep old loess tunnel[J]. Tunnel Construction, 2019, 39(11): 1806-1814.
[18] 王刚, 龚伦, 申志军, 等. 深埋老黄土隧道限阻耗能型支护方法[J]. 中国铁道科学, 2021, 42(4): 88-97. WANG Gang, GONG Lun, SHEN Zhijun, et al. Resistance-limiting and energy-dissipating support for deep buried old loess tunnel[J]. China Railway Science, 2021, 42(4): 88-97.
[19] 张常光, 范文, 赵均海. 深埋圆形巷道围岩塑性区位移及特征曲线新解和参数分析[J]. 岩土力学, 2016, 37(1): 12-24. ZHANG Changguang, FAN Wen, ZHAO Junhai. New solutions of rock plastic displacement and ground response curve for a deep circular tunnel and parametric analysis[J]. Rock and Soil Mechanics, 2016, 37(1): 12-24.
[20] 赵文华, 康亚明, 汤占岐, 等. 考虑岩石峰后特性的矿井深埋巷道支护方法研究[J]. 煤炭工程, 2011, 43(8): 39-41. ZHAO Wenhua, KANG Yaming, TANG Zhanqi, et al. Study on mine roadway support method in deep mine in consideration of rock features after peak value[J]. Coal Engineering, 2011, 43(8): 39-41.
[21] 仇文革, 李冰天, 田明杰, 等. 基于现场实测的隧道初期支护受力模式分析[J]. 隧道建设(中英文), 2017, 37(12): 1508-1517. QIU Wenge, LI Bingtian, TIAN Mingjie, et al. Analysis of force mode of tunnel primary support based on field measurement[J]. Tunnel Construction, 2017, 37(12): 1508-1517.
[1] 魏纲, 徐天宝, 张治国. 复杂应力路径下波纹钢加固盾构隧道数值分析[J]. 隧道与地下工程灾害防治, 2023, 5(2): 24-32.
[2] 裴超, 肖勇, 朱智勇, 刘艳萍, 杨文波, 赵亮亮. 复杂应力环境中隧道大变形特征与形变控制[J]. 隧道与地下工程灾害防治, 2023, 5(2): 89-98.
[3] 王立川, 马相峰, 王化武, 杨玲, 姚云霄, 龚伦, 王秋, 刘子琦, 樊永杰, 周保安. 某运营高铁隧道上部大型溶洞演化致灾与处置方案[J]. 隧道与地下工程灾害防治, 0, (): 1-14.
[4] 王明年,于丽,李琦,王旭. 高速铁路隧道防灾疏散救援技术研究综述[J]. 隧道与地下工程灾害防治, 2019, 1(2): 13-23.
[5] 傅鹤林,黄震,王慧,张加兵,史越. 地铁安全事故分析及安全管理[J]. 隧道与地下工程灾害防治, 2019, 1(2): 59-66.
[6] 王福善. 木寨岭隧道极高地应力软岩大变形控制技术[J]. 隧道与地下工程灾害防治, 2020, 2(4): 65-73.
[7] 刘晓杰,梁庆国,刘传新,张堂杰,王文卓. 富水深埋黄土隧道变形规律及控制措施[J]. 隧道与地下工程灾害防治, 2021, 3(2): 23-32.
[8] 朱晓天. 渗流作用下粉质黏土地层超深基坑危害数值模拟分析[J]. 隧道与地下工程灾害防治, 2022, 4(2): 98-106.
[9] 杨帆. 广义SMP准则在圆形断面隧道围岩渗流解析解的应用[J]. 隧道与地下工程灾害防治, 2022, 4(4): 91-99.
[10] 王立川,马相峰,王化武,杨玲,姚云晓,龚伦, 王秋,刘子琦,樊永杰,周保安. 某运营高铁隧道上部大型溶洞演化致灾与处置方案研究[J]. 隧道与地下工程灾害防治, 2020, 2(1): 20-33.
[11] 张建,梁庆国,王永刚,庞小冲. 黄土隧道底鼓机理分析与防治技术[J]. 隧道与地下工程灾害防治, 2020, 2(1): 84-90.
[1] QIAN Qihu. Scientific use of the urban underground space to construction the harmonious livable and beautiful city[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 1 -7 .
[2] DENG Mingjiang, LIU Bin. Challenges, countermeasures and development direction of geological forward-prospecting for TBM cluster tunneling in super-long tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 8 -19 .
[3] DING Xiuli, ZHANG Yuting, ZHANG Chuanjian, YAN Tianyou, HUANG Shuling. Review on countermeasures and their adaptability evaluation to tunnels crossing active faults[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 20 -35 .
[4] JIAO Yuyong, ZHANG Weishe, OU Guangzhao, ZOU Junpeng, CHEN Guanghui. Review of the evolution and mitigation of the water-inrush disaster in drilling-and-blasting excavated deep-buried tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 36 -46 .
[5] ZHANG Qingsong, ZHANG Lianzhen, LI Peng, FENG Xiao. New progress in grouting reinforcement theory of water-rich soft stratum in underground engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 47 -57 .
[6] XIA Kaiwen, XU Ying, CHEN Rong. Dynamic tests of rocks subjected to simulated deep underground environments[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 58 -75 .
[7] HONG Kairong. Study on rock breaking and wear of TBM hob in high-strength high-abrasion stratum[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 76 -85 .
[8] TAN Zhongsheng. Application experimental study of high-strength lattice girders with heat treatment in tunnel engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 86 -92 .
[9] CHEN Jianxun, LUO Yanbin. The stability of structure and its control technology for lager-span loess tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 93 -101 .
[10] JING Hongwen, YU Liyuan, SU Haijian, GU Jincai, YIN Qian. Development and application of catastrophic experiment system for water inrush in surrounding rock of deep tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 102 -110 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn