|
|
Numerical modeling of vibration and damage of surrounding rock in tunnel blasting by using 4D-LSM |
ZHAO Gaofeng1, XU Zhichao1, HAO Yimin1, HU Xiaodong1, DENG Xifei2
|
1. School of Civil Engineering, Tianjin University, Tianjin 300350, China; 2. China Tiesiju Civil Engineering Group, Hefei 230023, Anhui, China |
|
|
Abstract The application of 4D-LSM in rock blasting was studied. The fundamental principles of 4D-LSM in tunnel surrounding rock blasting were introduced, including system equations, non-reflective boundary conditions and rock fracturing model based on multi-body failure criterion. Aiming at the blasting of tunnel surrounding rock, 4D-LSM was used to establish the surrounding rock vibration analysis model, single hole blasting model and surrounding rock damage model under blasting. On the basis of different tunnel blasting design schemes, these models were processed through geometric simplification and boundary condition simplification to realize the quantitative analysis of the peak load velocity of the key points of the tunnel blasting surrounding rock for the given blasting scheme. Aiming at the problem of single-hole free-surface blasting, the simulation effects of DLSM and 4D-LSM were compared, and the advantages of 4D-LSM in dealing with large dynamic deformation and failure of rocks were demonstrated. The numerical modelling of surrounding rock damage zone depth under different blasting design parameters was realized by 4D-LSM. The safety classification and ranking of different blasting schemes were realized through the prediction and analysis of particle vibration velocity and damage zone depth predicted by 4D-LSM. The optimization of the tunnel rock blasting design could be realized by quantitative sensitivity analysis and ranking of blasting safety based on numerical simulation by using 4D-LSM.
|
Received: 15 July 2021
Published: 20 September 2021
|
|
|
|
[1] |
MA G W, HAO H, ZHOU Y X. Modeling of wave propagation induced by underground explosion[J]. Computers and Geotechnics, 1998, 22(3/4): 283-303.
|
[2] |
王志亮, 郑明新. 基于TCK损伤本构的岩石爆破效应数值模拟[J]. 岩土力学, 2008, 29(1): 230-234. WANG Zhiliang, ZHENG Mingxin. Numerical simulation of effect of rock blasting based on TCK damage constitutive model[J]. Rock and Soil Mechanics, 2008, 29(1): 230-234.
|
[3] |
BENDEZU M, ROMANEL C, ROEHL D. Finite element analysis of blast-induced fracture propagation in hard rocks[J]. Computers & Structures, 2017, 182: 1-13.
|
[4] |
LI H B, XIA X, LI J C, et al. Rock damage control in bedrock blasting excavation for a nuclear power plant[J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48(2): 210-218.
|
[5] |
陈占军,朱传云,周小恒. 爆破荷载作用下岩石边坡动态响应的FLAC3D模拟研究[J]. 爆破, 2005,22(4):8-13. CHEN Zhanjun, ZHU Chuanyun, ZHOU Xiaoheng. FLAC3D simulation for dynamic response of rock slope under explosion[J]. Blasting, 2005, 22(4):8-13.
|
[6] |
李飞,陈卫忠,李术才,等. 高速公路浅埋大跨度双跨连拱隧道爆破振动影响研究[J]. 岩石力学与工程学报, 2004, 23(增刊2): 4744-4748. LI Fei, CHEN Weizhong, LI Shucai, et al. Study of effects of blast on shallow large-span double-linked-arch tunnel of expressway[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(Suppl.2): 4744-4748.
|
[7] |
PRAMANIK R, DEB D. Implementation of smoothed particle hydrodynamics for detonation of explosive with application to rock fragmentation[J]. Rock Mechanics and Rock Engineering, 2015, 48(4): 1683-1698.
|
[8] |
HU W Q, CHEN Z. Model-based simulation of the synergistic effects of blast and fragmentation on a concrete wall using the MPM[J]. International Journal of Impact Engineering, 2006, 32(12): 2066-2096.
|
[9] |
马上, 张雄. 聚能装药射流形成的自适应物质点法模拟[J]. 固体力学学报, 2009,30(5): 504-508. MA Shang, ZHANG Xiong. Adaptive material point method for shaped charge jet formation[J]. Chinese Journal of Solid Mechanics, 2009, 30(5): 504-508.
|
[10] |
XU L, SCHREYER H, SULSKY D. Blast-induced rock fracture near a tunnel[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2015, 39(1): 23-50.
|
[11] |
CHEN S G, ZHAO J. A study of UDEC modelling for blast wave propagation in jointed rock masses[J]. International Journal of Rock Mechanics and Mining Sciences, 1998, 35(1): 93-99.
|
[12] |
DENG X F, ZHU J B, CHEN S G, et al. Some fundamental issues and verification of 3DEC in modeling wave propagation in jointed rock masses[J]. Rock Mechanics and Rock Engineering, 2012, 45(5): 943-951.
|
[13] |
ZHAO Z Y, ZHANG Y, BAO H R. Tunnel blasting simulations by the discontinuous deformation analysis[J]. International Journal of Computational Methods, 2011, 8(2): 277-292.
|
[14] |
NING Y J, YANG J, MA G W, et al. Modelling rock blasting considering explosion gas penetration using discontinuous deformation analysis[J]. Rock Mechanics and Rock Engineering, 2011, 44(4):483-490.
|
[15] |
张秀丽, 焦玉勇, 刘泉声, 等. 节理对爆炸波传播影响的数值研究[J]. 岩土力学, 2008,29(3): 717-721. ZHANG Xiuli, JIAO Yuyong, LIU Quansheng, et al. Numerical study on effect of joints on blasting wave propagation in rock mass[J]. Rock and Soil Mechanics, 2008, 29(3): 717-721.
|
[16] |
PARK B K, YOON J, JEON S, et al. Study on blast-induced fracturing for determination of optimal spacing between contour holes using PFC[C] //Proceedings of the International Symposium of the International Society for Rock Mechanics.[S.l.] :Elsevier B.V.,2005:441-446.
|
[17] |
崔铁军,马云东,王来贵. 基于PFC3D的露天矿边坡爆破过程模拟及稳定性研究[J]. 应用数学和力学, 2014, 35(7): 759-767. CUI Tiejun, MA Yundong, WANG Laigui. Blasting process simulation and stability study of an open mine slope based on PFC3D[J]. Applied Mathematics and Mechanics, 2014, 35(7): 759-767.
|
[18] |
LI X, ZHANG Q B, HE L, et al. Particle-based numerical manifold method to model dynamic fracture process in rock blasting[J]. International Journal of Geomechanics, 2017, 17(5): E4016014.1-E4016014.20.
|
[19] |
ZHAO G F, FANG J N, ZHAO J. A 3D distinct lattice spring model for elasticity and dynamic failure[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2011, 35(8): 859-885.
|
[20] |
JIANG C, ZHAO G F, KHALILI N. On crack propagation in brittle material using the distinct lattice spring model[J]. International Journal of Solids and Structures, 2017, 118/119: 41-57.
|
[21] |
WANG Y. Analysis of dynamic characteristics of through-wall cracks between 2 boreholes in the directed fracture controlled blasting[J]. Fatigue & Fracture of Engineering Materials & Structures, 2018, 41(2): 273-286.
|
[22] |
ZHAO G F. Developing a four-dimensional lattice spring model for mechanical responses of solids[J]. Computer Methods in Applied Mechanics and Engineering, 2017, 315: 881-895.
|
[23] |
ZHAO G F, DENG Z Q, ZHANG B. Multibody failure criterion for the four-dimensional lattice spring model[J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 123: 104126.
|
[24] |
赵高峰,殷超凡,扈晓冬,等. 岩石隧道光面爆破的自动化布孔设计[J]. 隧道与地下工程灾害防治, 2020,2(3): 48-57. ZHAO Gaofeng, YIN Chaofan, HU Xiaodong, et al. Automatic design of blast-hole pattern for smooth blasting of rock tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2020, 2(3): 48-57.
|
[25] |
扈晓冬. 岩石隧道全断面光面爆破炮孔布置的优化设计研究[D]. 天津: 天津大学, 2019. HU Xiaodong. Optimization design study of blasthole layout for full section smooth blasting of rock tunnel[D]. Tianjin: Tianjin University, 2019.
|
|
|
|