Please wait a minute...
 
隧道与地下工程灾害防治  2022, Vol. 4 Issue (4): 79-90    DOI: 10.19952/j.cnki.2096-5052.2022.04.10
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
软岩大变形分类分级方法及TBM适应性
王明耀1,鲁义强1,2*,贺飞1,李潮1
1.中铁工程装备集团有限公司, 河南 郑州 450016;2.同济大学土木工程学院, 上海 200092
Adaptability of TBM and classification method of large deformation of soft rock
WANG Mingyao1, LU Yiqiang1,2*, HE Fei1, LI Chao1
1. China Railway Engineering Equipment Group Co., Ltd., Zhengzhou 450016, Henan, China;
2. College of Civil Engineering, Tongji University, Shanghai 200092, China
下载:  PDF (836KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对目前缺乏不同大变形等级下的TBM施工适宜性评价方法的问题,通过分析软岩大变形机理,总结大变形相关分级方法,考虑TBM掘进影响因素,建立软岩隧道TBM法适宜性分级标准,将其划分为非常适宜、适宜、较适宜、适宜性差、不适宜五个等级,并通过工程实例验证该方法的合理性,为软岩隧道大变形分级及TBM适宜性评价提供合理的参考依据,进而选择合适的施工方法和防治措施。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王明耀
鲁义强
贺飞
李潮
关键词:  软岩大变形  分类分级  TBM  适宜性评价  施工改进    
Abstract: At present, the evaluation method of TBM construction suitability under different large deformation levels was lacking. The suitability classification standard of TBM method for soft rock tunnel was established by analyzing the mechanism of large deformation in soft rock, summarizing the classification methods, and considering the influencing factors of TBM tunnelling. It was divided into five classes: very suitable, suitable, more suitable, poorly suitable and unsuitable, and the reasonableness of the method was verified by engineering examples. This method could provide a reasonable reference basis for the classification of large deformation in soft rock tunnels and the evaluation of the suitability of TBM, and then selected suitable construction methods and prevention measures.
Key words:  large deformation of soft rock    classification and grading    TBM    adaptability evaluation    improvement measure
收稿日期:  2022-05-25      修回日期:  2022-09-30      发布日期:  2022-12-20     
中图分类号:  U459  
基金资助: 基金项目:中国中铁股份重大专项资助项目(cz02-专项-03)
通讯作者:  鲁义强(1989— ),男,河南开封人,博士,高级工程师,主要研究方向为隧道防灾和TBM设计.    E-mail:  yiqianglu007@163.com
作者简介:  王明耀(1996— ),男,河南开封人,硕士,助理工程师,主要研究方向为隧道防灾. E-mail: 19940641996@163.com.
引用本文:    
王明耀, 鲁义强, 贺飞, 李潮. 软岩大变形分类分级方法及TBM适应性[J]. 隧道与地下工程灾害防治, 2022, 4(4): 79-90.
WANG Mingyao, LU Yiqiang, HE Fei, LI Chao. Adaptability of TBM and classification method of large deformation of soft rock. Hazard Control in Tunnelling and Underground Engineering, 2022, 4(4): 79-90.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2022/V4/I4/79
[1] 陈玉. 共和隧道围岩大变形机制及防治措施研究[D]. 重庆: 重庆大学, 2008. CHEN Yu. Study on large deformation mechanism and prevention technique of the wall rock in Gonghe Tunnel[D]. Chongqing: Chongqing University, 2008.
[2] 徐则民,黄润秋. 深埋特长隧道及其施工地质灾害[M]. 成都: 西南交通大学出版社, 2000.
[3] 陈志敏. 高地应力软岩隧道围岩压力研究和围岩与支护结构相互作用机理分析[D]. 兰州: 兰州交通大学, 2012. CHEN Zhimin. The study of surrounding rock pressure and interaction mechanism between surrounding rock and supporting structure in the weak rock tunnels with high geostress[D]. Lanzhou: Lanzhou Jiatong University, 2012.
[4] 杨景芳. 日本惠那山道路隧道简介[J]. 公路, 1989,34(1):42-45. YANG Jingfang. Introduction to Huinashan Road Tunnel in Japan[J]. Highway, 1989, 31(1):42-45.
[5] 杨文波,王宗学,田浩晟,等. 基于PSO-SVM算法的层状软岩隧道大变形预测方法[J]. 隧道与地下工程灾害防治, 2022,4(1):29-37. YANG Wenbo, WANG Zongxue, TIAN Haosheng, et al. Large deformation prediction method of layered soft rock tunnel based on PSO-SVM algorithm[J]. Hazard Control in Tunnelling and Underground Engineering, 2022, 4(1):29-37.
[6] MENG L B, LI T B, JIANG Y, et al. Characteristics and mechanisms of large deformation in the Zhegu Mountain Tunnel on the Sichuan-Tibet Highway[J]. Tunnelling and Underground Space Technology, 2013, 37: 157-164.
[7] 于家武,郭新新. 木寨岭公路隧道复合型大变形控制技术与实践[J]. 隧道建设(中英文), 2021,41(9):1565-1576. YU Jiawu, GUO Xinxin. Composite large deformation control techniques for muzhailing highway tunnel[J]. Tunnel Construction, 2021, 41(9):1565-1576.
[8] 王福善. 木寨岭隧道极高地应力软岩大变形控制技术[J]. 隧道与地下工程灾害防治, 2020,2(4):65-73. WANG Fushan. The control technology of the large deformation in weak surrounding rock with extreme crustal stress for Muzhailing Tunnel [J]. Hazard Control in Tunnelling and Underground Engineering, 2020, 2(4):65-73.
[9] 陈善民, 王全胜, 辛维克, 等. 新乌鞘岭隧道软岩大变形悬臂掘进机施工控制技术研究[J]. 隧道建设(中英文), 2022,42(4):720-729. CHEN Shanmin, WANG Quansheng, XIN Weike, et al. Control technology of soft rock large deformation in new wushaoling tunnel induced by cantilever excavator construction [J]. Tunnel Construction, 2022, 42(4):720-729.
[10] 吴永胜, 谭忠盛, 李少孟. 挤压性大变形隧道围岩基本特性的试验研究[J]. 土木工程学报, 2015, 48(增刊1): 398-402. WU Yongsheng, TAN Zhongsheng, LI Shaomeng. Experimental study on the basic characteristics of tunnel in squeezing surrounding rock with large deformation[J]. China Civil Engineering Journal, 2015, 48(Suppl.1): 398-402.
[11] 刘宁, 张春生, 张传庆, 等. 深埋大直径软岩水工隧洞衬砌结构安全性分析[J]. 隧道与地下工程灾害防治, 2019,1(2):92-99. LIU Ning, ZHANG Chunsheng, ZHANG Chuanqing, et al. Analysis on lining structure safety of large hydraulic tunnel in deep-buried soft rock[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(2):92-99.
[12] 相浩. 复合地层下TBM掘进的可掘性评价[D]. 重庆: 重庆大学, 2016. XIANG Hao. The boreability evaluation of TBM tunnelling under composite strata[D]. Chongqing: Chongqing University, 2016.
[13] TERZAGHI K. Rock defects and loads in tunnel supports[C] // Rock Tunneling with Steel Supports. Ohio, USA: the Commercial Shearing & Stamping Co., 2004:1799.
[14] BARLA G. Squeezing rocks in tunnels [J]. ISRM News Journal, 1995:44-49.
[15] 姜云. 公路隧道围岩大变形的预测预报与对策研究[D]. 成都: 成都理工大学, 2004. JIANG Yun. The study on the forecast and countermeasure of great distortion of highway tunnel wall rock[D]. Chengdu: Chengdu University of Technology, 2004.
[16] 王成虎, 沙鹏, 胡元芳, 等. 隧道围岩挤压变形问题探究[J]. 岩土力学, 2011, 32(增刊2): 143-147. WANG Chenghu, SHA Peng, HU Yuanfang, et al. Study of squeezing deformation problems during tunneling[J]. Rock and Soil Mechanics, 2011, 32(Suppl. 2): 143-147.
[17] SAARI K. Analysis of plastic deformation of layers interesting tunnels and shafts in rock[D]. Berkeley,USA: Universitiy of California, 1982.
[18] HOEK E. Big tunnels in bad rock[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(9): 726-740.
[19] 喻渝. 挤压性围岩支护大变形的机理及判定方法[J]. 世界隧道, 1998,35(1):46-51. YU Yu. Serious deformation of surrounding rock in squeezing ground[J]. World Tunnel, 1998, 35(1):46-51.
[20] 李宁. 挤压性围岩隧道变形分级与控制对策[J]. 铁道建筑, 2018, 58(5):55-58. LI Ning. Deformation classification and control strategy for squeezing surrounding rock tunnels[J]. Railway Engineering, 2018, 58(5):55-58.
[21] 国家铁路局. 铁路隧道设计规范: TB 10003—2016[S]. 北京: 中国铁道出版社, 2017.
[22] 铁道部基本建设总局.铁路新奥法指南[M].北京: 中国铁道出版社,1988.
[23] 铁道部经济规划研究院.通隧( 2008)铁路工程建设通用参考图 隧道复合式衬砌[Z].北京: 铁道部经济规划研究院,2008.
[24] 卞国忠. 浅谈隧道围岩大变形的判据及处理措施[J]. 科学技术通讯, 1998(2):15-17. BIAN Guozhong. Discussion on the criterion and treatment measures of large deformation of tunnel surrounding rock[J]. Science and Technology Communication, 1998(2):15-17.
[25] 张祉道. 关于挤压性围岩隧道大变形的探讨和研究[J]. 现代隧道技术, 2003, 40(2): 5-12. ZHANG Zhidao. Discussion and study on large deformation of tunnel in squeezing ground[J]. Modern Tunnelling Technology, 2003, 40(2): 5-12.
[26] GOEL R K, JETHWA J L, PAITHANKAR A G. Tunnelling through the young Himalayas: a case history of the Maneri-Uttarkashi power tunnel[J]. Engineering Geology, 1995, 39: 31-44.
[27] SAKURAI S. Lessons learned from field measurements in tunnelling[J]. Tunnelling and Underground Space Technology, 1997, 12(4): 453-460.
[28] WOOD A M M. Tunnels for roads and motorways[J]. Quarterly Journal of Engineering Geology, 1972, 5: 111-126.
[29] NAKANO R. Geotechnical properties of mudstone of Neogene Tertiary in Japan with special reference to the mechanism of squeezing-swelling rock pressure in tunneling[C] //International Symposium on Soil Mechanics.Oaxaca, Mexico: [s.n.] , 1979:75-92.
[30] AYDAN Ö, AKAGI T, KAWAMOTO T. The squeezing potential of rocks around tunnels: theory and prediction[J]. Rock Mechanics and Rock Engineering, 1993, 26(2): 137-163.
[31] SHARAN S K. Analytical solutions for stresses and displacements around a circular opening in a generalized Hoek-Brown rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(1):78-85.
[32] ANAGNOSTOU G. A model for swelling rock in tunnelling[J]. Rock Mechanics and Rock Engineering, 1993, 26(4): 307-331.
[33] 何满潮, 景海河, 孙晓明. 软岩工程力学[M]. 北京: 科学出版社, 2002.
[34] 姜云, 李永林, 李天斌, 等. 隧道工程围岩大变形类型与机制研究[J]. 地质灾害与环境保护, 2004,15(4):46-51. JIANG Yun, LI Yonglin, LI Tianbin, et al. Study of the classified system of types and mechanism of great distortion in tunnel and underground engineering[J]. Journal of Geological Hazards and Environment Preservation, 2004, 15(4):46-51.
[35] 胡元芳, 刘志强, 王建宇. 高地应力软岩条件下挤压变形预测及应用[J]. 现代隧道技术, 2011,48(3):28-34. HU Yuanfang, LIU Zhiqiang, WANG Jianyu. Squeezing deformation prediction of soft rocks under high ground stress and its application[J]. Modern Tunnelling Technology, 2011, 48(3):28-34.
[36] 张广泽, 冯君, 易勇进, 等. 隧道大变形机理及分类分级探讨[J]. 铁道标准设计, 2020,64(10):77-82. ZHANG Guangze, FENG Jun, YI Yongjin, et al. Discussion on the mechanism and classification of large deformation in tunnel engineering[J]. Railway Standard Design, 2020, 64(10):77-82.
[37] SINGH B. Rock mass classification: a practical approach in civil engineering[M]. New York, US: Elsevier Science Ltd., 1999.
[38] HOEK E, MARINOS P. Predicting tunnel squeezing problems in weak heterogeneous rock masses [J]. Tunnels and Tunnelling International, 2000, 32(11):45-51.
[39] 张祉道. 关于挤压性围岩隧道大变形的探讨和研究[J]. 现代隧道技术, 2003,40(2):5-12. ZHANG Zhidao. Discussion and study on large deformation of tunnel in squeezing ground[J]. Modern Tunnelling Technology, 2003, 40(2):5-12.
[40] 铁道部第二工程局. 铁路隧道施工规范:TB J204—86[S]. 北京: 中国铁道出版社, 1987.
[41] JETHWA J L, SINGH B. Estimation of ultimate rock pressure for tunnel linings under squeezing rock conditions-a new approach[C] //ISRM Symposium 1984. Design and Performance of Underground Excavations. London, UK: British Geotechnical Society, 1984.
[42] AYDAN Ö, AKAGI T, KAWAMOTO T. The squeezing potential of rock around tunnels: theory and prediction with examples taken from Japan[J]. Rock Mechanics and Rock Engineering, 1996, 29(3):125-143.
[43] 中铁二局集团有限公司. 不良地质隧道的开挖及支护技术研究总报告及分项报告[R]. 成都: 中铁二局集团有限公司,2000.
[44] 徐林生, 李永林, 程崇国. 公路隧道围岩变形破裂类型与等级的判定[J]. 重庆交通学院学报, 2002, 21(2): 16-20. XU Linsheng, LI Yonglin, CHENG Chongguo. Judging of the deformation-cracking type and grade about surrounding rock of highway tunnel[J]. Journal of Chongqing Jiaotong University, 2002, 21(2): 16-20.
[45] 陈子全, 何川, 吴迪, 等. 高地应力层状软岩隧道大变形预测分级研究[J]. 西南交通大学学报, 2018, 53(6): 1237-1244. CHEN Ziquan, HE Chuan, WU Di, et al. Study of large deformation classification criterion for layered soft rock tunnels under high geostress[J]. Journal of Southwest Jiaotong University, 2018, 53(6): 1237-1244.
[46] 赵周能, 冯夏庭, 肖亚勋, 等. 不同开挖方式下深埋隧洞微震特性与岩爆风险分析[J]. 岩土工程学报, 2016,38(5):867-876. ZHAO Zhouneng, FENG Xiating, XIAO Yaxun, et al. Microseismic characteristics and rockburst risk of deep tunnel constructed by different excavation methods[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(5):867-876.
[47] 陈馈. TBM在铁路隧道施工中的应用前景[J]. 建筑机械, 2006(15):14-17. CHEN Kui. Application of TBM in construction of railway tunnel[J]. Construction Machinery, 2006(15):14-17.
[48] 李建斌. TBM构造与应用[M]. 北京: 人民交通出版社, 2019.
[49] 王石春. 隧道掘进机与地质因素关系综述[J]. 世界隧道, 1998, 35(2): 39-43. WANG Shichun. Relationship between TBM tunneling and geological conditions[J]. Modern Tunnelling Technology, 1998, 35(2): 39-43.
[50] 尚彦军, 杨志法, 曾庆利, 等. TBM施工遇险工程地质问题分析和失误的反思[J]. 岩石力学与工程学报, 2007, 26(12): 2404-2411. SHANG Yanjun, YANG Zhifa, ZENG Qingli, et al. Retrospective analysis of TBM accidents from its poor flexibility to complicated geological conditions[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(12): 2404-2411.
[51] 尹俊涛, 尚彦军, 傅冰骏, 等. TBM掘进技术发展及有关工程地质问题分析和对策[J]. 工程地质学报, 2005, 13(3): 389-397. YIN Juntao, SHANG Yanjun, FU Bingjun, et al. Development of TBM-excavation technology and analyses & countermeasures of related engineering geological problems[J]. Journal of Engineering Geology, 2005, 13(3): 389-397.
[52] 李建斌, 陈馈. 双护盾TBM的技术特点及工程应用[J]. 建筑机械化, 2006, 27(3): 46-49. LI Jianbin, CHEN Kui. Technique characters of double shield machine TBM and its application in projects[J]. Construction Mechanization, 2006, 27(3): 46-49.
[53] 贾春年. TBM在隧道掘进中应用[J]. 矿山压力与顶板管理, 1999,16(增刊1):196-199. JIA Chunnian. Application of TBM in tunneling[J]. Ground Pressure and Strata Control, 1999, 16(Suppl.1):196-199.
[54] 何发亮, 谷明成, 王石春. TBM施工隧道围岩分级方法研究[J]. 岩石力学与工程学报, 2002(9):1350-1354. HE Faliang, GU Mingcheng, WANG Shichun. Study on surrounding rockmass classification of tunnel cut by TBM[J]. Chinese Journal of Rock Mechanics and Engineering, 2002(9):1350-1354.
[55] 章元爱, 梅志荣, 张军伟. TBM施工条件下隧洞围岩分级方法研究与应用[J]. 路基工程, 2012(4): 166-169. ZHANG Yuanai, MEI Zhirong, ZHANG Junwei. Research and application of tunnel surrounding rock classification method under TBM construction[J]. Subgrade Engineering, 2012(4): 166-169.
[56] 蔡王强. 天水曲溪城乡供水工程长隧洞TBM掘进适宜性分级评价[J]. 甘肃水利水电技术, 2019,55(3):28-33. CAI Wangqiang. Hierarchical assessment of the suitability of TBM tunneling in long tunnels in urban and rural water supply projects in Tianshuiquxi, China[J]. Gansu Water Resources and Hydropower Technology, 2019, 55(3):28-33.
[57] ROSTAMI J. Hard rock TBM cutterhead modeling for design and performance prediction[J]. Geomechanics and Tunnelling, 2008, 1(1): 18-28.
[58] 尹俊涛. 与TBM相关的主要工程地质问题研究[D]. 长沙:中南大学, 2005. YIN Juntao. The study of major engineering geological problems associated with TBM[D]. Changsha: Central South University, 2005.
[59] HOEK E, MARINOS P. Predicting tunnel squeezing problems in weak heterogeneous rock masses[J]. Tunnels and Tunnelling International, 2000, 32(11): 45-51.
[60] 王志强. 甘肃引洮工程重大工程地质问题研究[D]. 兰州: 兰州大学, 2006. WANG Zhiqiang. Study on the great and important geological problems of Yintao Project in Gansu Province[D]. Lanzhou: Lanzhou University, 2006.
[61] 黄兴, 刘泉声, 彭星新, 等. 引大济湟工程TBM挤压大变形卡机计算分析与综合防控[J]. 岩土力学, 2017, 38(10): 2962-2972. HUANG Xing, LIU Quansheng, PENG Xingxin, et al. Analysis and comprehensive prevention-control for TBM jamming induced by squeezing deformation of surrounding rock around water diversion tunnel from Datong River into Huangshui River[J]. Rock and Soil Mechanics, 2017, 38(10): 2962-2972.
[62] 尚彦军, 史永跃, 曾庆利, 等. 昆明上公山隧道复杂地质条件下TBM卡机及护盾变形问题分析和对策[J]. 岩石力学与工程学报, 2005, 24(21): 3858-3863. SHANG Yanjun, SHI Yongyue, ZENG Qingli, et al. TBM jamming and deformation in complicated geological conditions and engineering measures[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(21): 3858-3863.
[63] 中华人民共和国住房和城乡建设部. 岩土锚杆与喷射混凝土支护工程技术规范: GB 50086—2015[S]. 北京: 中国计划出版社, 2016.
[64] 高燕芳. TBM掘进技术在软岩隧洞中的应用[J]. 水利与建筑工程学报, 2011,9(6):126-128. GAO Yanfang. Application of TBM boring technology in soft rock tunnels[J]. Journal of Water Resources Architectural Engineering, 2011, 9(6):126-128.
[1] 杨继华, 闫长斌, 齐三红, 郭卫新, 杨风威. 不良地质段双护盾TBM施工综合处理技术[J]. 隧道与地下工程灾害防治, 2023, 5(2): 59-70.
[2] 龚秋明, 谢兴飞, 黄流, 兴海, 吴根生. 引绰济辽工程二标隧洞段TBM滚刀磨损规律[J]. 隧道与地下工程灾害防治, 2022, 4(4): 1-10.
[3] 钟长平, 竺维彬, 王俊彬, 谢文达. 双模盾构机/TBM的原理与应用[J]. 隧道与地下工程灾害防治, 2022, 4(3): 47-66.
[4] 唐旭海, 邵祖亮, 许婧璟, 张怡恒. 高温-液氮循环处理下花岗岩损伤劣化机制[J]. 隧道与地下工程灾害防治, 2022, 4(1): 18-28.
[5] 赵毅. TBM强岩爆掘进段小导洞超前应力释放施工技术[J]. 隧道与地下工程灾害防治, 2022, 4(1): 78-85.
[6] 温森,吴斐,李胜,张洛萌. 不同侧压系数和岩石强度下TBM滚刀破岩效率的数值模拟[J]. 隧道与地下工程灾害防治, 2021, 3(4): 9-19.
[7] 王玉杰,沈强,曹瑞琅,龚秋明,刘立鹏. 大变形围岩TBM施工适应性分类标准研究[J]. 隧道与地下工程灾害防治, 2020, 2(4): 37-43.
[8] 徐琛,刘晓丽,张鲁军,毛宗原,周建军,王思敬. 耦合地质模型的TBM隧道施工过程进度仿真预测[J]. 隧道与地下工程灾害防治, 2020, 2(2): 41-46.
[9] 李树忱,万泽恩,商金华,赵世森,杨晓东,李阳. 盾构/TBM渣土改良与盾尾密封技术研究进展[J]. 隧道与地下工程灾害防治, 2019, 1(4): 33-48.
[10] 谭忠盛. 隧道与地下工程建设理念及关键技术——记王梦恕院士的主要学术思想和科研成就[J]. 隧道与地下工程灾害防治, 2019, 1(2): 1-6.
[11] 邓铭江, 刘斌. 超特长隧洞TBM集群施工超前地质预报的挑战、对策与发展方向[J]. 隧道与地下工程灾害防治, 2019, 1(1): 8-19.
[12] 洪开荣. 高强度高磨蚀地层TBM滚刀破岩与磨损研究[J]. 隧道与地下工程灾害防治, 2019, 1(1): 76-85.
[1] QIAN Qihu. Scientific use of the urban underground space to construction the harmonious livable and beautiful city[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 1 -7 .
[2] DENG Mingjiang, LIU Bin. Challenges, countermeasures and development direction of geological forward-prospecting for TBM cluster tunneling in super-long tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 8 -19 .
[3] DING Xiuli, ZHANG Yuting, ZHANG Chuanjian, YAN Tianyou, HUANG Shuling. Review on countermeasures and their adaptability evaluation to tunnels crossing active faults[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 20 -35 .
[4] JIAO Yuyong, ZHANG Weishe, OU Guangzhao, ZOU Junpeng, CHEN Guanghui. Review of the evolution and mitigation of the water-inrush disaster in drilling-and-blasting excavated deep-buried tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 36 -46 .
[5] ZHANG Qingsong, ZHANG Lianzhen, LI Peng, FENG Xiao. New progress in grouting reinforcement theory of water-rich soft stratum in underground engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 47 -57 .
[6] XIA Kaiwen, XU Ying, CHEN Rong. Dynamic tests of rocks subjected to simulated deep underground environments[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 58 -75 .
[7] HONG Kairong. Study on rock breaking and wear of TBM hob in high-strength high-abrasion stratum[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 76 -85 .
[8] TAN Zhongsheng. Application experimental study of high-strength lattice girders with heat treatment in tunnel engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 86 -92 .
[9] CHEN Jianxun, LUO Yanbin. The stability of structure and its control technology for lager-span loess tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 93 -101 .
[10] JING Hongwen, YU Liyuan, SU Haijian, GU Jincai, YIN Qian. Development and application of catastrophic experiment system for water inrush in surrounding rock of deep tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 102 -110 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn