Please wait a minute...
 
隧道与地下工程灾害防治  2022, Vol. 4 Issue (1): 63-70    DOI: 10.19952/j.cnki.2096-5052.2022.01.08
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
某明挖深基坑地下连续墙非对称配筋优化设计
曹成威1,石钰锋1*,徐长节1,侯世磊2,龚宏华3,纪松岩4
(1.华东交通大学江西省岩土工程基础设施安全与控制重点实验室, 江西 南昌 330013;2.中铁十四局集团有限公司, 山东 济南 250101;3.江西地方铁路开发有限公司, 江西 南昌 330001;4.中铁建大桥工程局集团第一工程有限公司, 辽宁 大连 116033)
Optimal design of asymmetrical reinforcement for diaphragm wall in a deep foundation pit
CAO Chengwei1, SHI Yufeng1*, XU Changjie1, HOU Shilei2, GONG Honghua3, JI Songyan4
1. Jiangxi Key Laboratory of Geotechnical Infrastructure Safety and Control, East China Jiaotong University, Nanchang 330013, Jiangxi, China; 2. China Railway 14th Bureau Group Co., Ltd., Jinan 250101, Shandong, China; 3. Jiangxi Local Railway Development Co., Ltd., Nanchang 330001, Jiangxi, China; 4. China Railway Construction Bridge Engineering Bureau Group 1st Engineering Co., Ltd., Dalian 116033, Liaoning, China
下载:  PDF (5782KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 依托南昌市艾溪湖明挖地铁基坑工程,通过ABAQUS软件对该基坑开挖进行数值模拟,对比地连墙水平位移、支撑轴力、地表沉降数值计算和现场监测结果,验证数值模型的可靠性和适用性,重点分析开挖过程中地连墙弯矩变化规律。研究表明:地连墙迎土侧和开挖侧弯矩存在显著差异,开挖侧整体受拉,迎土侧整体受压,开挖侧最大弯矩为迎土侧的2.3倍,原设计方案中地连墙两侧主筋采用对称配筋,设计方案存在较大优化空间;单纯提高配筋量,裂缝控制效果并不佳;在开挖深度和内支撑间距不变条件下,对现有设计进行非对称配筋优化后,迎土侧和开挖侧配筋量分别减少38.3%、11.4%,且结构分担荷载特性更合理,可以较大程度降低钢筋使用量,以减少工程投资和建设规模。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
曹成威
石钰锋
徐长节
侯世磊
龚宏华
纪松岩
关键词:  基坑工程  地下连续墙  数值模拟  受力变形  非对称配筋    
Abstract: Relying on the open excavation subway foundation pit project of Aixihu in Nanchang, the excavation of the foundation pit was numerically simulated by ABAQUS software. The reliability and applicability of the numerical model were verified by comparing the numerical calculation and field monitoring results of the horizontal displacement of the diaphragm wall, supported axial force, surface settlement. The bending moment variation law of diaphragm wall during excavation was analyzed. The research showed that there was a significant difference in the bending moment between the earth facing side and the excavation side of the diaphragm wall, the excavation side was tensioned as a whole and the earth facing side was compressed as a whole. The maximum bending moment of the excavation side was 2.3 times than that of the earth facing side. In the original design scheme, the main reinforcement on both sides of the diaphragm wall was symmetrically reinforced, and there was a large optimization space in the design scheme; the effect of crack control was not good only by increasing the amount of reinforcement. Under the condition of constant excavation depth and internal support spacing, after the asymmetric reinforcement optimization of the existing design, the reinforcement amount on the earth facing side and excavation side was reduced by 38.3% and 11.4% respectively, and the load sharing characteristics of the structure were more reasonable, which could greatly reduce the use of reinforcement, so as to reduce the project investment and construction scale.
Key words:  foundation pit engineering    diaphragm wall    numerical simulation    stress deformation    asymmetric reinforcement
收稿日期:  2021-12-29      修回日期:  2022-02-26      发布日期:  2022-03-20     
中图分类号:  U459.3  
基金资助: 江西省重点基金资助项目(20202ACB202005);南昌轨道交通集团科研资助项目(2019HGKYB002);江西省自然科学基金重点资助;项目(20192ACB20001)
通讯作者:  石钰锋(1985— ),男,江西九江人,博士,副教授,硕士生导师,主要研究方向为隧道与地下工程.    E-mail:  s074811156@126.com
作者简介:  曹成威(1995— ),男,湖南郴州人,硕士研究生,主要研究方向为隧道与地下工程. E-mail:827858500@qq.com
引用本文:    
曹成威, 石钰锋, 徐长节, 侯世磊, 龚宏华, 纪松岩. 某明挖深基坑地下连续墙非对称配筋优化设计[J]. 隧道与地下工程灾害防治, 2022, 4(1): 63-70.
CAO Chengwei, SHI Yufeng, XU Changjie, HOU Shilei, GONG Honghua, JI Songyan. Optimal design of asymmetrical reinforcement for diaphragm wall in a deep foundation pit. Hazard Control in Tunnelling and Underground Engineering, 2022, 4(1): 63-70.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2022/V4/I1/63
[1] 杨毅秋,周慧超,杨贵生,等. 装配式地下连续墙设计施工技术研究[J]. 铁道工程学报, 2020, 37(2): 91-97. YANG Yiqiu, ZHOU Huichao, YANG Guisheng, et al. Research on the design and construction technique of prefabricated diaphragm walls[J]. Journal of Railway Engineering, 2020, 37(2): 91-97.
[2] 陈先智,徐代明,徐赞. 聚合物泥浆在超深地下连续墙施工中的应用[J]. 都市快轨交通, 2019, 32(6): 86-91. CHEN Xianzhi, XU Daiming, XU Zan. Application of polymer slurry in construction of ultra-deep underground diaphragm wall[J]. Urban Rapid Rail Transit, 2019, 32(6): 86-91.
[3] 魏纲,黄时雨,蒋丞武,等. 上软下硬地层盾构工作井开挖受力与变形监测分析[J]. 隧道与地下工程灾害防治, 2020, 2(4): 29-36. WEI Gang, HUANG Shiyu, JIANG Chengwu, et al. Monitoring and analysis of stress and deformation of shield working well excavation in upper soft and lower hard soil layer[J]. Hazard Control in Tunnelling and Underground Engineering, 2020, 2(4): 29-36.
[4] BRIAUD J L, KIM N K. Beam-column method for tieback walls[J].Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124(1): 67-79.
[5] 吴瑞拓,顾晓强,高广运,等. 基于HSS模型的上海地铁深基坑开挖变形分析[J]. 建筑科学与工程学报, 2021, 38(6): 64-70. WU Ruituo, GU Xiaoqiang, GAO Guangyun, et al. Analysis of deep excavation deformation of Shanghai metro station using HSS model[J]. Journal of Architecture and Civil Engineering, 2021, 38(6): 64-70.
[6] 刘永超,石长城,杨贵生,等. 装配式地连墙原型试验及受力变形特性研究[J]. 铁道工程学报, 2021, 38(8): 85-90. LIU Yongchao, SHI Changcheng, YANG Guisheng, et al. The in situ test and study of deformation characteristics of prefabricated diaphragm walls[J]. Journal of Railway Engineering Society, 2021, 38(8): 85-90.
[7] 蒙国往,农忠建,吴波,等. 地铁车站深基坑开挖变形及数值模拟分析[J]. 中国安全生产科学技术, 2020, 16(7): 145-151. MENG Guowang, NONG Zhongjian, WU Bo, et al. Excavation deformation and numerical simulation analysis of deep foundation pit in subway station[J]. Journal of Safety Science and Technology, 2020, 16(7): 145-151.
[8] 高亿文,李明广,陈锦剑. 超载影响下围护结构非对称基坑的受力及变形特性分析[J]. 上海交通大学学报, 2020, 54(6): 643-651. GAO Yiwen, LI Mingguang, CHEN Jinjian. Stress and deformation performance of deep excavation with asymmetrical retaining structures in adjacent surcharge[J]. Journal of Shanghai Jiao Tong University, 2020, 54(6): 643-651.
[9] 孙武斌. 地铁车站偏压基坑围护结构变形影响因素研究[J]. 重庆交通大学学报(自然科学版), 2020, 39(4): 86-91. SUN Wubin. Influence factors of deformation of enclosure structure of biasing foundation[J]. Journal of Chongqing Jiaotong University(Natural Sciences), 2020, 39(4): 86-91.
[10] 姜燕,杨光华,乔有梁,等. 某大型深基坑的优化设计研究[J]. 岩土工程学报, 2012, 34(增刊1): 335-341. JIANG Yan, YANG Guanghua, QIAO Youliang, et al. Optimal design of a large deep excavation[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(Suppl.1): 335-341.
[11] 汪鹏程,文杰,邵长征,等. 基于数值分析的深基坑围护结构优化设计[J]. 合肥工业大学学报(自然科学版), 2016, 39(9): 1248-1253. WANG Pengcheng, WEN Jie, SHAO Changzheng, et al. Optimization design of retaining structure of deep excavation based on numerical analysis[J]. Journal of Hefei University of Technology(Natural Science), 2016, 39(9): 1248-1253.
[12] 章润红,刘汉龙,仉文岗. 深基坑支护开挖对临近地铁隧道结构的影响分析研究[J]. 防灾减灾工程学报, 2018, 38(5): 857-866. ZHANG Runhong, LIU Hanlong, ZHANG Wengang. Numerical investigation on tunnel responses induced by adjacent deep braced pit excavations[J]. Journal of Disaster Prevention and Mitigation Engineering, 2018, 38(5): 857-866.
[13] 刘新荣,王林枫,陈峰,等. 内撑式地连墙变形特征及其参数优化研究[J]. 地下空间与工程学报, 2021, 17(3): 727-738. LIU Xinrong, WANG Linfeng, CHEN Feng, et al. Research on deformation characteristics and parameter optimization of diaphragm wall with interior bracing structure[J]. Chinese Journal of Underground Space and Engineering, 2021, 17(3): 727-738.
[14] 石钰锋, 阳军生, 白伟, 等. 紧邻铁路偏压基坑围护结构变形与内力测试分析[J]. 岩石力学与工程学报, 2011, 30(4): 826-833. SHI Yufeng, YANG Junsheng, BAI Wei, et al. Analysis of field testing for deformation and internal force of unsymmetrical loaded foundation pits(pit's)enclosure structure close to railway[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(4): 826-833.
[15] 吴小将, 刘国彬, 卢礼顺, 等. 地铁车站地下连续墙裂缝控制标准的优化探讨[J]. 岩石力学与工程学报, 2005, 24(增刊2): 5395-5399. WU Xiaojiang, LIU Guobin, LU Lishun, et al. Discussion on optimization of allowable crack width for diaphragm wall of metro station[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(Suppl.2): 5395-5399.
[16] 王建伟, 薛建荣. 大偏心受压柱对称与非对称配筋的钢筋用量对比[J]. 河南科技大学学报(自然科学版), 2006(5): 58-60. WANG Jianwei, XUE Jianrong. The comparative analysis of the amount of the reinforcing bar between the symmetrical and unsymmetrical disposed reinforcing bar of the great eccentric pressed column[J]. Journal of Henan University of Science and Technology(Natural Science), 2006(5): 58-60.
[17] 彭鹏. 深基坑支护方案优化设计及有限元分析[D]. 大连: 大连理工大学, 2016. PENG Peng. The optimization design and finite element analysis of deep foundation pit support scheme[D]. Dalian: Dalian University of Technology, 2016.
[18] 中华人民共和国住房和城乡建设部. 混凝土结构设计规范: GB 50010—2010[S]. 北京: 中国建筑工业出版社, 2011.
[19] 中国建筑科学研究院. 建筑基坑支护技术规程: JGJ 120—2012[S]. 北京: 中国建筑工业出版社, 2012.
[1] 孙港, 王军祥, 孟祥竹, 郭连军, 孙杰. 基于近场动力学理论的岩石双孔爆破动态断裂行为数值模拟[J]. 隧道与地下工程灾害防治, 2023, 5(2): 42-58.
[2] 赵兴东, 窦翔, 李勇, 王立君. 基于Ventsim的地下水封洞库建造期通风方式优选[J]. 隧道与地下工程灾害防治, 2023, 5(1): 8-17.
[3] 黄兴, 张炜, 殷建钢, 施皓, 张晓磊. 填埋场扩建后下穿隧道结构的安全性[J]. 隧道与地下工程灾害防治, 2023, 5(1): 55-63.
[4] 党晓宇, 马劲松. 基于桩板组合结构等代仰拱的公路隧道加固方案[J]. 隧道与地下工程灾害防治, 2023, 5(1): 90-96.
[5] 关振长,周宇轩,吕春波,吕荔炫. 空气间隔装药周边眼爆破精细化数值模拟[J]. 隧道与地下工程灾害防治, 2022, 4(4): 11-19.
[6] 黄昕,谷冠思,张子新,李昀. 考虑渗流的泥水平衡盾构隧道稳定性数值模拟[J]. 隧道与地下工程灾害防治, 2022, 4(2): 28-38.
[7] 李相兵,梁波,鲁思源. 考虑多因素影响的双侧壁导坑法施工参数研究[J]. 隧道与地下工程灾害防治, 2022, 4(2): 39-48.
[8] 石宗涛. 济南黄河隧道泥水盾构开挖面稳定性分析[J]. 隧道与地下工程灾害防治, 2022, 4(1): 71-77.
[9] 李钊, 梁庆国, 孙文, 曹小平. 隧道台阶法施工上台阶长度对隧道变形的影响[J]. 隧道与地下工程灾害防治, 2022, 4(1): 55-62.
[10] 房倩, 杜建明, 王赶, 杨晓旭. 模型边界对圆形隧道开挖引起地表沉降的影响分析[J]. 隧道与地下工程灾害防治, 2022, 4(1): 10-17.
[11] 夏英杰, 孟庆坤, 唐春安, 张永彬, 赵丹晨, 赵振兴. 岩石破裂过程分析方法在隧道工程模拟中的应用[J]. 隧道与地下工程灾害防治, 2021, 3(3): 36-49.
[12] 黄笑, 肖培伟, 董林鹭, 杨兴国, 徐奴文. 高地应力地下洞室群开挖过程岩体力学响应及破坏机制[J]. 隧道与地下工程灾害防治, 2021, 3(3): 85-93.
[13] 张鸿勇, 张艳杰, 刘春, 施斌, 曹政. 基于离散元孔隙密度流法的地铁隧道收敛变形注浆整治分析[J]. 隧道与地下工程灾害防治, 2021, 3(3): 100-110.
[14] 赵高峰,徐志超,郝益民,扈晓冬,邓稀肥. 基于4D-LSM的隧道围岩爆破振动和损伤判定研究[J]. 隧道与地下工程灾害防治, 2021, 3(3): 11-19.
[15] 乔雄,倪伟淋,骆维斌,刘文高. 三车道公路岩土混合隧道单侧壁导坑法快速施工[J]. 隧道与地下工程灾害防治, 2021, 3(2): 33-42.
[1] QIAN Qihu. Scientific use of the urban underground space to construction the harmonious livable and beautiful city[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 1 -7 .
[2] DENG Mingjiang, LIU Bin. Challenges, countermeasures and development direction of geological forward-prospecting for TBM cluster tunneling in super-long tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 8 -19 .
[3] DING Xiuli, ZHANG Yuting, ZHANG Chuanjian, YAN Tianyou, HUANG Shuling. Review on countermeasures and their adaptability evaluation to tunnels crossing active faults[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 20 -35 .
[4] JIAO Yuyong, ZHANG Weishe, OU Guangzhao, ZOU Junpeng, CHEN Guanghui. Review of the evolution and mitigation of the water-inrush disaster in drilling-and-blasting excavated deep-buried tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 36 -46 .
[5] ZHANG Qingsong, ZHANG Lianzhen, LI Peng, FENG Xiao. New progress in grouting reinforcement theory of water-rich soft stratum in underground engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 47 -57 .
[6] XIA Kaiwen, XU Ying, CHEN Rong. Dynamic tests of rocks subjected to simulated deep underground environments[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 58 -75 .
[7] HONG Kairong. Study on rock breaking and wear of TBM hob in high-strength high-abrasion stratum[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 76 -85 .
[8] TAN Zhongsheng. Application experimental study of high-strength lattice girders with heat treatment in tunnel engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 86 -92 .
[9] CHEN Jianxun, LUO Yanbin. The stability of structure and its control technology for lager-span loess tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 93 -101 .
[10] JING Hongwen, YU Liyuan, SU Haijian, GU Jincai, YIN Qian. Development and application of catastrophic experiment system for water inrush in surrounding rock of deep tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 102 -110 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn