Abstract: In order to reveal the deformation characteristics of the adjacent structures induced by immersed tunnel trench excavation, the Ruyifang Radioactive System Project in Guangzhou was taken as the background to analyze the deformation law of the adjacent plant buildings and the reinforced revetment during the foundation excavation by 3D-dimensional simulation and field measurement. The research results showed that the soil on the slope surface of the foundation trench moved as a whole towards the direction of the foundation trench, with a maximum displacement of 23.65 mm along the direction of the foundation trench, occurring at the point of slope change in the middle of the slope; The excavation of the foundation trench induces the overall tilting of the factory building towards the riverbed, and the displacement of the factory building increased with the depth of the foundation trench excavation and eventually stabilized,the numerical results were consistent with the measured results,the maximum measured settlement of the factory building was 5.66 mm, and the maximum vertical displacement of the factory building in the direction of the embankment calculated numerically was 8.13 mm, the maximum ratio of the settlement difference between adjacent column foundations to the column spacing was 0.264‰, which met the requirements of the standard limit and ensured the safe operation of the factory building; The reinforced revetment deformed mainly in the vertical direction of the embankment with the variations of small at both ends and large in the middle and the maximum of 7.98 mm generating in the revetment top middle; The installation of steel sheet piles and foundation grouting at the top of the slope could effectively reduce the deformation of the factory structure, with a significant reduction in settlement. Compared with no measures taken, the simultaneous installation of steel sheet piles and grouting reinforcement could reduce the settlement of the factory structure by about 25%.
刘力英, 欧振锋, 杨春山, 段尚磊. 沉管基槽开挖诱发临岸结构变形数值模拟与实测分析[J]. 隧道与地下工程灾害防治, 2024, 6(4): 12-19.
LIU Liying, OU Zhenfeng, YANG Chunshan, DUAN Shanglei. Numerical simulation and field measurement analysis of coastal structures under immersed tunnel trench excavation. Hazard Control in Tunnelling and Underground Engineering, 2024, 6(4): 12-19.
[1] 陈韶章, 陈越. 沉管隧道施工手册[M]. 北京: 中国建筑工业出版社, 2014. [2] 刘建国, 周顺华, 宫全美. 水下边坡稳定性计算模式的探讨[J]. 上海铁道大学学报(理工辑), 2000, 21(2):35-38. LIU Jianguo, ZHOU Shunhua, GONG Quanmei. Calculating mode for the stability of underwater slope[J]. Journal of Tongji University(Medical Science), 2000, 21(2):35-38. [3] 肖明清. 长江沉管隧道水下基槽边坡的稳定性与合理坡率[J]. 现代隧道技术, 2001, 38(1):42-46. XIAO Mingqing. Research on stability and suitable slope ratio of subwater trench for immersed tunnel crossing the Yantze River[J]. Modern Tunnelling Technology, 2001, 38(1):42-46. [4] 王勇, 乔春生, 孙彩红. 外海深埋沉管隧道基槽水下边坡设计与稳定性分析[J]. 北京交通大学学报, 2013, 37(1):57-61. WANG Yong, QIAO Chunsheng, SUN Caihong. Design and stability analysis of submerged trench slope for deep buried immerse tunnel in external sea[J].Journal of Beijing Jiaotong University, 2013, 37(1):57-61. [6] 牛犇, 陈炜昀, 刘志军, 等. 沉管隧道沉放过程中海底基槽边坡稳定性的数值模拟分析[J]. 工业建筑, 2023, 53(6):31-36. NIU Ben, CHEN Weiyun, LIU Zhijun, et al. Numerical analysis on influence of sinking processes of immersed tube tunels on stability of seabed foundation trench slopes[J]. Industrial Construction, 2023, 53(6):31-36. [7] 曹影峰, 李兴高, 杨益. 深中通道沉管隧道基槽回淤及边坡稳定性研究[J].岩土工程学报, 2020, 42(7): 1350-1358. CAO Yingfeng, LI Xinggao, YANG Yi. Back silting and slope stability of foundation trench in Shenzhen-Zhongshan immersed tunnel project[J].Chinese Journal of Geotechnical Engineering, 2020, 42(7): 1350-1358. [8] 谷任国, 梁建勋. 沉管基槽开挖对桥墩侧向位移影响的模型试验[J]. 科学技术与工程, 2020, 20(1): 340-347. GU Renguo, LIANG Jianxun. Model test on lateral displacement of bridge piers during excavation of sinking pipe foundation[J]. Science Technology and Engineering, 2020, 20(1): 340-347. [9] 谷任国, 梁建勋. 沉管基槽开挖引起桥梁位移的有限元分析和模型试验[J]. 中外公路, 2020, 40(6):157-162. GU Renguo, LIANG Jianxun. Finite element analysis and modelling of bridge displacements induced by immersed tube foundation trench excavation[J]. Journal of China & Foreign Highway, 2020, 40(6):157-162. [10] 魏永建, 谢发祥, 金建军, 等. 内河航道改造对跨航道桥梁基础影响的模拟分析[J]. 交通科学与工程, 2017, 33(3):60-68. WEI Yongjian, XIE Faxiang, JIN Jianjun, et al. The simulation analysis of the influence of channel renovation on the foundation of bridges across inland river[J]. Journal of Transport Science and Engineering, 2017, 33(3): 60-68. [11] 刘振楠. 内河水下边坡稳定性及加固方案研究[J]. 天津城建大学学报, 2021, 27(5):323-328. LIU Zhennan. Study on stability and reinforcement scheme of underwater slope in inland water[J].Journal of Tianjin Chengjian University, 2021, 27(5):323-328. [12] 金泰赛, 吴加武. 某重力式码头基槽开挖支护方案比选及应用效果[J]. 水运工程, 2022(9):172-178. JIN Taisai, WU Jiawu. Comparison and selection of supporting scheme for foundation trench excavation of a gravity wharf and application effects[J]. Port & Waterway Engineering, 2022(9): 172-178. [13] 贺维国,于勇. 广州市仑头-生物岛隧道护岸结构设计[J]. 现代隧道技术, 2011, 48(4):97-104. HE Weiguo, YU Yong. Design of bank protection structure for the Luntou-biological Island Tunnel[J]. Modern Tunnelling Technology, 2011, 48(4): 97-104. [14] 刘力英, 魏立新, 汪传智, 等. 基于三维有限元模型的沉管隧道格形地墙护岸变形模式及方案比选分析[J]. 昆明理工大学学报(自然科学版), 2023, 48(2):148-157. LIU Liying, WEI Lixin, WANG Chuanzhi,et al. Deformation pattern and scheme comparison of the latticed diaphragm wall in the revetment of an immersed tunnel via 3D numerical simulation[J]. Journal of Kunming University of Science and Technology(Natural Sciences), 2023, 48(2): 148-157. [15] 魏立新,刘力英,杨春山,等.沉管隧道格形地墙护岸变形的地层参数敏感性分析[J]. 公路交通科技, 2023, 40(3):166-172. WEI Lixin, LIU Liying, YANG Chunshan, et al. Sensitivity analysis on stratum parameters of latticed diaphragm wall revetment for immersed tunnel[J]. Journal of Highway and Transportation Research and Development, 2023, 40(3):166-172. [16] CHEN X Q, DING W Q, ZHAO T C, et al. Deformation characteristics of latticed diaphragm wall in revetment foundation trench for one immersed tunnel[J]. IOP Conference Series: Materials Science and Engineering, 2020, 741(1): 012018. [17] 张玉成, 杨光华, 胡海英, 等. 格栅式连续墙在沉管隧道护岸工程支护中的应用[J]. 岩土工程学报, 2012, 34(增刊1):440-446. ZHANG Yucheng, YANG Guanghua, HU Haiying,et al. Application of grillage shaped diaphragm wall support of revetment in project of immersed tube tunnel[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(Suppl.1):440-446. [18] 王卫东. 软土深基坑变形及环境影响分析方法与控制技术[J]. 岩土工程学报, 2024, 46(1):1-25. WANG Weidong. Analytical methods and controlling techniques for deformation and environmental influence of deep excavations in soft soils[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(1):1-25. [19] 袁聚云, 陈玺元, 顾晓强, 等. 广东阳江海洋砂性土小应变硬化土模型参数的试验研究[J]. 同济大学学报(自然科学版),2022, 50(6): 852-860. YUAN Juyun, CHEN Xiyuan, GU Xiaoqiang, et al. Experimental study on parameters of hardening soil model with small strain stiffness for marine sand in Yangjiang, Guangdong[J]. Journal of Tongji University(Natural Science), 2022, 50(6): 852-860. [20] 王卫东, 李青, 徐中华, 等. 软黏土小应变本构模型参数研究与应用[J]. 地下空间与工程学报, 2023, 19(3): 844-855. WANG Weidong, LI Qing, XU Zhonghua, et al. Investigation and application of small-strain model parameters for soft clay deposits[J]. Chinese Journal of Underground Space and Engineering, 2023, 19(3): 844-855. [21] 中华人民共和国住房和城乡建设部. 建筑地基基础设计规范: GB 50007—2011[S].北京:中国建筑工业出版社, 2011.