Please wait a minute...
 
隧道与地下工程灾害防治  2025, Vol. 7 Issue (1): 57-67    DOI: 10.19952/j.cnki.2096-5052.2025.01.06
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
基于贝叶斯更新的煤矿回采巷道采动变形预测方法
张斌1,贾海宾1,李阿涛2,王怀远3,陈郁川1,于万泉1,秦长坤4*
1.山东新巨龙能源有限公司, 山东 菏泽 274918;2.山东能源集团有限公司冲击地压防治研究中心, 山东 济南 250014;3.山东能源集团鲁西矿业有限公司, 山东 菏泽 274700;4.中国科学院武汉岩土力学研究所 岩土力学与工程安全全国重点实验室, 湖北 武汉 430071
Prediction method for mining-induced deformation in coal mine roadways based on Bayesian updating
ZHANG Bin1, JIA Haibin1, LI Atao2, WANG Huaiyuan3, CHEN Yuchuan1, YU Wanquan1, QIN Changkun4*
1. ShandongXinjulong Energy Co., Ltd., Heze 274918, Shandong, China;
2. Research Center for Rock Burst Prevention and Control of Shandong Energy Group Co., Ltd., Jinan 250014, Shandong, China;
3. Shandong Energy Group Luxi Mining Co., Ltd., Heze 274700, Shandong, China;
4. State Key Laboratory of Geomechanics and Geotechnical Engineering Safety, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, Hubei, China
下载:  PDF (7573KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 回采巷道受强烈采动影响易出现顶板剧烈下沉、大变形和结构破坏等灾害,准确预测其变形趋势对于保障矿井安全生产和实现有效的围岩控制具有重要意义。本研究以新巨龙煤矿回采工作面的围岩变形监测数据为基础,分析了回采巷道采动变形的演化特征,并提出了适用于煤矿回采巷道的经验预测模型。针对传统经验模型难以考虑围岩变形的动态变化及参数不确定性的问题,本研究引入贝叶斯更新算法,构建了动态更新预测模型,通过实时监测数据动态调整模型参数的后验分布,以提高预测精度并降低预测的不确定性。以新巨龙煤矿6305和2305工作面监测数据为例对模型进行验证,结果表明,随着数据累积和更新次数增加,模型参数后验分布趋于稳定,预测精度显著提高,最终预测变形值与实测值高度吻合,预测拟合系数R2达到0.98以上,均方根误差显著降低。此外,以另外一个煤矿某工作面数据进行扩展验证,结果进一步证实了本研究方法在不同地质条件矿井下的泛化能力和适用性。本研究提出的贝叶斯更新预测方法能够有效应对围岩变形的动态变化和参数不确定性,为煤矿回采巷道的围岩稳定性控制提供数据支撑。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张斌
贾海宾
李阿涛
王怀远
陈郁川
于万泉
秦长坤
关键词:  回采巷道  采动变形  预测  经验模型  贝叶斯  动态更新    
Abstract: Mining roadways were found to be susceptible to severe roof subsidence, large deformation, and structural failure under intense mining-induced disturbances. Accurately predicting deformation trends was considered crucial for ensuring mine safety and achieving effective surrounding rock control. Based on deformation monitoring data from mining faces at the Xin Julong Coal Mine, the deformation evolution characteristics of mining roadways were analyzed, and an empirical prediction model suitable for coal mining roadways was proposed. Considering that traditional empirical models were limited in capturing dynamic deformation behavior and parameter uncertainties, a Bayesian updating algorithm was introduced to construct a dynamically updated prediction model. By continuously adjusting the posterior distribution of model parameters with real-time monitoring data, prediction accuracy was improved, and uncertainty was reduced. Model validation was performed using monitoring data from working faces 6305 and 2305 of Xin Julong Coal Mine. It was indicated that, as data accumulated and Bayesian updating iterations proceeded, posterior parameter estimated stabilized, significantly enhancing prediction accuracy. The final predicted deformation values were found to closely match measured values, with determination coefficients(R2)exceeding 0.98 and root mean square errors(RMSE)significantly reduced. Additionally, extended validation was conducted using monitoring data from another coal mine's working face, further confirming the generalization capability and applicability of the proposed method under different geological conditions. The Bayesian updating prediction approach proposed in this research was demonstrated to effectively addresses the dynamic variations and parameter uncertainties in surrounding rock deformation, providing reliable data support for surrounding rock stability control in coal mine roadways.
Key words:  mining roadway    mining-induced deformation    prediction    empirical model    Bayesian    dynamic updateReceived: 2025-02-14    Revised: 2025-03-09    Accepted: 2025-03-11    Published: 2025-03-20
发布日期:  2025-03-28     
中图分类号:  U455  
基金资助: 山东能源集团有限公司科技计划重大资助项目(LX2022-015)
作者简介:  张斌(1988—),男,山东泰安人,工程师,硕士,主要研究方向为矿井冲击地压灾害防控及治理. E-mail:715258560@qq.com. *通信作者简介:秦长坤(1994—),男,河南商丘人,博士研究生,主要研究方向为深部岩体地应力场监测及动力灾害智能预警方法. E-mail:ckqin_whrsm@163.com
引用本文:    
张斌,贾海宾,李阿涛,王怀远,陈郁川,于万泉,秦长坤. 基于贝叶斯更新的煤矿回采巷道采动变形预测方法[J]. 隧道与地下工程灾害防治, 2025, 7(1): 57-67.
ZHANG Bin, JIA Haibin, LI Atao, WANG Huaiyuan, CHEN Yuchuan, YU Wanquan, QIN Changkun. Prediction method for mining-induced deformation in coal mine roadways based on Bayesian updating. Hazard Control in Tunnelling and Underground Engineering, 2025, 7(1): 57-67.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2025/V7/I1/57
[1] 康红普. 我国煤矿巷道围岩控制技术发展70年及展望[J]. 岩石力学与工程学报, 2021, 40(1): 1-30. KANG Hongpu. Seventy years development and prospects of strata control technologies for coal mine roadways in China[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(1): 1-30.
[2] 马念杰, 赵希栋, 赵志强, 等. 深部采动巷道顶板稳定性分析与控制[J]. 煤炭学报, 2015, 40(10): 2287-2295. MA Nianjie, ZHAO Xidong, ZHAO Zhiqiang, et al. Stability analysis and control technology of mine roadway roof in deep mining[J]. Journal of China Coal Society, 2015, 40(10): 2287-2295.
[3] 姜耀东, 刘文岗, 赵毅鑫, 等. 开滦矿区深部开采中巷道围岩稳定性研究[J]. 岩石力学与工程学报, 2005, 24(11): 1857-1862. JIANG Yaodong, LIU Wengang, ZHAO Yixin, et al. Study on surrounding rock stability of deep mining in Kailuan Mining Group[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(11): 1857-1862.
[4] 杨军, 石海洋. 亭南煤矿深部软岩巷道底鼓“四控” 机理及应用[J]. 采矿与安全工程学报, 2015, 32(2): 247-252. YANG Jun, SHI Haiyang. Mechanics and application of four floor heave control technology of deep soft rock roadway in Tingnan Coal Mine[J]. Journal of Mining & Safety Engineering, 2015, 32(2): 247-252.
[5] 曾鹏, 张志强, 李天斌, 等. 隧道围岩收敛变形预测模型动态选择与变形量概率预测[J]. 地质科技通报, 2024, 43(6): 15-25. ZENG Peng, ZHANG Zhiqiang, LI Tianbin, et al. Dynamic selection of optimal tunnel convergence prediction model for a probabilistic deformation prediction[J]. Bulletin of Geological Science and Technology, 2024, 43(6): 15-25.
[6] 赵栋. 柳新煤矿深部软岩巷道变形破坏机理及支护参数优化[D]. 徐州: 中国矿业大学, 2021. ZHAO Dong. Deformation and failure mechanism of deep soft rock roadway in Liuxin Coal Mine and optimization of supporting parameters[D]. Xuzhou: China University of Mining and Technology, 2021.
[7] 马念杰, 马海燕, 王银伟, 等. 深部大变形巷道支护原理与柔性锚索支护技术[J]. 采矿与安全工程学报, 2023, 40(5): 957-964. MA Nianjie, MA Haiyan, WANG Yinwei, et al. Support principle and flexible cable support technology of deep large deformation roadway[J]. Journal of Mining & Safety Engineering, 2023, 40(5): 957-964.
[8] 康红普, 王国法, 姜鹏飞, 等. 煤矿千米深井围岩控制及智能开采技术构想[J]. 煤炭学报, 2018, 43(7): 1789-1800. KANG Hongpu, WANG Guofa, JIANG Pengfei, et al. Conception for strata control and intelligent mining technology in deep coal mines with depth more than 1000m[J]. Journal of China Coal Society, 2018, 43(7): 1789-1800.
[9] 郁标, 杨金维, 寇永渊, 等. 金川二矿区3个中段协同开采巷道变形破坏特征研究[J]. 金属矿山, 2024(6): 23-30. YU Biao, YANG Jinwei, KOU Yongyuan, et al. Study on the deformation and damage characteristics of the three middle sections of coordinated mining roadway in Jinchuan No.2 Mining Area[J]. Metal Mine, 2024(6): 23-30.
[10] 杨仁树, 薛华俊, 何天宇, 等. 回采动压影响下深井巷道变形破坏规律数值模拟研究[J]. 煤炭工程, 2014, 46(10): 30-33. YANG Renshu, XUE Huajun, HE Tianyu, et al. Numerical simulation on deformation and failure law of deep mine roadway under dynamic mining pressure[J]. Coal Engineering, 2014, 46(10): 30-33.
[11] 吕情绪, 曹军, 高亮. 重复采动回采巷道变形机理及稳定控制[J]. 中国矿业, 2023, 32(5): 96-103. LÜ Qingxu, CAO Jun, GAO Liang. Deformation mechanism and stability control of repeated mining roadway[J]. China Mining Magazine, 2023, 32(5): 96-103.
[12] 董崇泽, 翟志伟. 近距离煤层回采扰动下巷道分区段底鼓控制方法研究[J]. 矿业研究与开发, 2022, 42(9): 84-91. DONG Chongze, ZHAI Zhiwei. Research on the sub-sections roadway floor heave control method under the mining disturbance of close-distance coal seam[J]. Mining Research and Development, 2022, 42(9): 84-91.
[13] 常博, 刘旭东, 张传明, 等. 急倾斜煤岩互层巷道变形特征及机理研究[J]. 煤炭科学技术, 2022, 50(8): 40-49. CHANG Bo, LIU Xudong, ZHANG Chuanming, et al. Study on deformation characteristics and deformation mechanism of steep coal rock interbedded roadway[J]. Coal Science and Technology, 2022, 50(8): 40-49.
[14] JIMENEZ R, RECIO D. A linear classifier for probabilistic prediction of squeezing conditions in Himalayan Tunnels[J]. Engineering Geology, 2011, 121(3/4): 101-109.
[15] SULEM J, PANET M, GUENOT A. Closure analysis in deep tunnels[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1987, 24(3): 145-154.
[16] KONTOGIANNI V, PSIMOULIS P, STIROS S. What is the contribution of time-dependent deformation in tunnel convergence?[J]. Engineering Geology, 2006, 82(4): 264-267.
[17] PANET M. Time-dependent deformations in underground works[C] //Proceedings of the 4th Congress International Society for Rock Mechanics.Rotterdam,the Netherlands: Balkema, 1979(3): 279-290.
[18] GAUDIN B, FOLACCI J P, PANETM,et al. Soutènement d'une galerie dans les marnes du Cenomanien[C] //Proceedings of the 10th International Conference on Soil Mechanics and Foundation Engineering(ICSMFE). Stockholm, Sweden: ICSMFE, 1981(1):293-296.
[19] PANET M, GUENOT A. Analysis of convergence behind the face of a tunnel[C] //Proceedings of the 3rd International Symposium. Brighton, UK: IMM, 1982: 197-204.
[20] 卢邦稳, 刘长武, 谢辉, 等. 不等长工作面覆岩活动及回采巷道采动影响变形规律[J]. 金属矿山, 2016(1): 34-38. LU Bangwen, LIU Changwu, XIE Hui, et al. Law of overburden strata movement and mining roadway deformation under mining influence in the unequal length of working face[J]. Metal Mine, 2016(1): 34-38.
[1] 李启弟, 梁庆国, 周仁, 杨家伟, 蔡遵乐. 甘青隧道初始地应力场分析及岩爆预测[J]. 隧道与地下工程灾害防治, 2024, 6(4): 50-60.
[2] 郭志国,李益锌,周令剑,张一恒,叶瑀伋. 公路隧道火灾应急技术研究现状与展望[J]. 隧道与地下工程灾害防治, 2024, 6(2): 13-24.
[3] 禹海涛, 朱晨阳. 基于BP神经网络的圆形隧道地震响应预测方法及参数分析[J]. 隧道与地下工程灾害防治, 2023, 5(3): 19-26.
[4] 周彩贵, 李景, 梁庆国, 陈克霖. 水工引水隧洞施工涌水量预测方法对比[J]. 隧道与地下工程灾害防治, 2023, 5(1): 32-44.
[5] 丁智, 李鑫家, 张霄. 基于机器学习的盾构掘进地表变形预测研究与展望[J]. 隧道与地下工程灾害防治, 2022, 4(3): 1-9.
[6] 潘秋景, 李晓宙, 黄杉, 汪来, 王树英, 方国光. 机器学习在盾构隧道智能施工中的应用——综述与展望[J]. 隧道与地下工程灾害防治, 2022, 4(3): 10-30.
[7] 杨文波, 王宗学, 田浩晟, 吴枋胤, 杨自成. 基于PSO-SVM算法的层状软岩隧道大变形预测方法[J]. 隧道与地下工程灾害防治, 2022, 4(1): 29-37.
[8] 艾青, 王琨, 姜孝谟, 袁勇, 王辉, 杜守继, 黄醒春. 基于损伤累积模型的公路隧道渗漏水病害诊断与预测[J]. 隧道与地下工程灾害防治, 2021, 3(1): 37-47.
[9] 李金龙,刘继芹,李庆东,徐文杰,庄端阳. 盐岩储库水溶建腔机理与模拟方法研究进展[J]. 隧道与地下工程灾害防治, 2020, 2(4): 1-8.
[10] 付俊生. 隧道围岩变形预测及趋势判断方法[J]. 隧道与地下工程灾害防治, 2019, 1(4): 103-108.
[11] 宋振骐. 我国采矿工程学科发展现状及其深层次发展问题的探讨[J]. 隧道与地下工程灾害防治, 2019, 1(2): 7-12.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn