Please wait a minute...
 
隧道与地下工程灾害防治  2025, Vol. 7 Issue (2): 51-63    DOI: 10.19952/j.cnki.2096-5052.2025.02.06
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
等值反磁通瞬变电磁数据的波场反变换方法及其在会泽铅锌矿区井下超前探测中的应用
李炼然1,任周洪1,王斌1,张权1,黄灏1,刘吉金1,许浩宇1,郭谦2
1.云南驰宏锌锗股份有限公司科技工程分公司, 云南 曲靖 654212;2.山东大学未来技术学院, 山东 济南 250002
Inverse wavefield transform method for opposing coils transient electromagnetic data and its application in ahead prospecting in the lead-zinc mine at Huize
LI Lianran1, REN Zhouhong1, WANG Bin1, ZHANG Quan1, HUANG Hao1, LIU Jijin1, XU Haoyu1, GUO Qian2
1. Technical and Engineering Branch of Yunnan Chihong Zn &
Ge Co., Ltd., Qujing 654212, Yunnan, China;
2. School of Future Technology, Shandong University, Jinan 250002, Shandong, China
下载:  PDF (18845KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 会泽铅锌矿区内围岩以弱岩溶化碳酸盐岩为主,矿区内断层破碎带、节理、裂隙及岩溶等构造较为发育,为地下水的富集和运移提供了充足的空间和通道,掘进和开采过程中的突涌水呈现出高水压、大流量的显著特点,因此对含水构造的超前探测刻不容缓。针对上述问题,选取等值反磁通瞬变电磁法并结合地质与钻探资料在矿山厂1 104 m和924 m两个中段开展了超前探测工作。在获取电阻率剖面的基础上,提出一种自适应波场反变换方法,将等值反磁通瞬变电磁数据转化为对电性界面敏感的虚拟波场,进而对地层电性结构进行定性刻画。在井下探测之前,针对最大探测深度与信号在空气中的衰减问题,还开展测深对比试验和空气衰减试验。采用2.5 Hz的发射基频在矿山场段取得了理想的探测成果,证明等值反磁通瞬变电磁法和波场反变换的有效性与可靠性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李炼然
任周洪
王斌
张权
黄灏
刘吉金
许浩宇
郭谦
关键词:  等值反磁通瞬变电磁  波场变换  自适应反变换  岩溶裂隙水  铅锌矿    
Abstract: In the Huize lead-zinc mine, the surrounding rocks are mainly weakly karstified carbonate rocks. Structures such as fault fracture zones, joints, fissures, and karsts in the mining area were relatively developed,which provided sufficient space and channels for the enrichment and migration of groundwater. The water inrush during the tunneling and mining processes was characterized by high water pressure and large flow. Therefore, advanced detection of water-bearing structures was urgently required. In response to the above problems, the equivalent anti-flux transient electromagnetic method was selected, combined with geological and drilling data to carry out advanced detection work at the 1 104 m and 924 m levels in the mining area. Based on the obtained resistivity profiles, an adaptive wavefield inverse transformation method was proposed to transform the equivalent anti-flux transient electromagnetic data into a pseudo-wavefield sensitive to electrical interfaces, enabling qualitative characterization of the strata's electrical structure.Prior to underground detection, sounding comparison tests and air attenuation tests were conducted to evaluate the maximum detection depth and signal attenuation in air. By using a transmission fundamental frequency of 2.5 Hz, ideal detection results were achieved in the mining area, demonstrating the effectiveness and reliability of the equivalent anti-flux transient electromagnetic method and the wavefield inverse transformation.
Key words:  opposing coils transient electromagnetic method    wavefield transform    self-adaptive inverse transform    karst fissure water    lead-zinc mineReceived:2025-03-12    Revised:2025-04-23    Accepted:2025-04-29    Published:2025-06-20
发布日期:  2025-06-18     
中图分类号:  U452  
基金资助: 国家自然科学基金青年基金资助项目(42407260)
作者简介:  李炼然(1975— ),男,云南大理人,高级工程师,主要研究方向为矿山地质和防治水. E-mail:18560753379@163.com
引用本文:    
李炼然,任周洪,王斌,张权,黄灏,刘吉金,许浩宇,郭谦. 等值反磁通瞬变电磁数据的波场反变换方法及其在会泽铅锌矿区井下超前探测中的应用[J]. 隧道与地下工程灾害防治, 2025, 7(2): 51-63.
LI Lianran, REN Zhouhong, WANG Bin, ZHANG Quan, HUANG Hao, LIU Jijin, XU Haoyu, GUO Qian. Inverse wavefield transform method for opposing coils transient electromagnetic data and its application in ahead prospecting in the lead-zinc mine at Huize. Hazard Control in Tunnelling and Underground Engineering, 2025, 7(2): 51-63.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2025/V7/I2/51
[1] 郭捷, 马凤山, 赵海军, 等. 三山岛海底金矿突涌水优势渗流通道与来源研究[J]. 工程地质学报, 2015,23(4): 784-789. GUO Jie, MA Fengshan, ZHAO Haijun, et al. Preferred seepage channels and source of water inrush in seabed gold mine at Sanshandao[J]. Journal of Engineering Geology, 2015, 23(4): 784-789.
[2] 王孝虎, 李胜. 山东张马屯铁矿靶向注浆技术的应用实践[J]. 现代矿业, 2018, 34(6): 201-204. WANG Xiaohu, LI Sheng. Application of target grouting technique on Zhangmatun Iron Mine in Shandong Province[J]. Modern Mining, 2018, 34(6): 201-204.
[3] 孙波. 济南张马屯铁矿帷幕注浆堵水工程简介[J]. 山东国土资源, 2005(增刊1): 89-91. SUN Bo. Introduction to curtain grouting and exclusion of water engineer of Zhangmatun Iron Deposit in Jinan City[J]. Shandong Land and Resources, 2005(Suppl.1): 89-91.
[4] 李锋. 济钢张马屯铁矿大帷幕突水监测及应力场分析[D]. 沈阳: 东北大学, 2008. LI Feng. Groundwater inrush monitoring and stress field analysis for great underground curtain of Jigang_Zhangmatun Iron ore[D]. Shenyang: Northeastern University, 2008.
[5] 武强, 郭小铭, 边凯, 等. 开展水害致灾因素普查防范煤矿水害事故发生[J]. 中国煤炭, 2023, 49(1):3-15. WU Qiang, GUO Xiaoming, BIAN Kai,et al. Carrying out general survey of the water disaster-causing factors to prevent the occurrence of coal mine water disasters[J]. China Coal, 2023, 49(1):3-15.
[6] 陈悦亨. 帷幕截流疏干技术在煤矿水害防治中的应用[J]. 中国新技术新产品, 2021(1): 119-121.
[7] 薛国强, 李貅. 瞬变电磁隧道超前预报成像技术[J]. 地球物理学报, 2008, 51(3): 894-900. XUE Guoqiang, LI Xiu. The technologyof TEM tunnel prediction imaging[J]. Chinese Journal of Geophysics, 2008, 51(3): 894-900.
[8] XUE G Q. The development of near-source electromagnetic methods in China[J]. Journal of Environmental and Engineering Geophysics, 2018, 23(1): 115-124.
[9] 范克睿. 地下工程含水构造瞬变电磁波场变换与多分辨成像方法[D]. 济南: 山东大学, 2021. FAN Kerui. Wavefield transform and multi-resolution imaging of transient electromagnetic method for the water-bearing structures in underground engineering[D]. Jinan: Shandong University, 2021.
[10] XUE G Q, YAN Y J, LI X, et al. Transient electromagnetic S-inversion in tunnel prediction[J]. Geophysical Research Letters, 2007, 34(18): 2007GL031080.
[11] LIU B, FAN K R, NIE L C, et al. Mapping water-abundant zones using transient electromagnetic and seismic methods when tunneling through fractured granite in the Qinling Mountains, China[J]. Geophysics, 2020, 85(4): B147-B159.
[12] 薛国强, 李海, 陈卫营, 等. 煤矿含水体瞬变电磁探测技术研究进展[J]. 煤炭学报, 2021, 46(1): 77-85. XUE Guoqiang, LI Hai, CHEN Weiying, et al. Progress of transient electromagnetic detection technology for water-bearing bodies in coal mines[J]. Journal of China Coal Society, 2021, 46(1): 77-85.
[13] 杨海燕. 矿用多匝小回线源瞬变电磁场数值模拟与分布规律研究[D]. 徐州: 中国矿业大学, 2009. YANG Haiyan. Study on numerical simulation and distribution regularity of transient electromagnetic field with mine-used multi small loop[D]. Xuzhou: China University of Mining and Technology, 2009.
[14] 杨海燕, 岳建华, 李锋平. 斜阶跃电流激励下多匝小回线瞬变电磁场延时特征[J]. 地球物理学报, 2019, 62(9): 3615-3628. YANG Haiyan, YUE Jianhua, LI Fengping. The decay characteristics of transient electromagnetic fields stimulated by ramp step current in multi-turn small coil[J]. Chinese Journal of Geophysics, 2019, 62(9): 3615-3628.
[15] 张河瑞. 多匝小回线装置瞬变电磁场响应规律研究[D]. 徐州: 中国矿业大学, 2022. ZHANG Herui. Study on the response characteristics oftransient electromagnetic fields of multi-turn small loops[D]. Xuzhou: China University of Mining and Technology, 2022.
[16] 刘志新. 矿井瞬变电磁场分布规律与应用研究[D]. 徐州: 中国矿业大学, 2008. LIU Zhixin. Study on the distribution and application of mine transient electromagnetic field[D]. Xuzhou: China University of Mining and Technology, 2008.
[17] 孙怀凤. 隧道含水构造三维瞬变电磁场响应特征及突水灾害源预报研究[D]. 济南: 山东大学, 2013. SUN Huaifeng. Three-dimensional transient electromagnetic responses of water bearing structures in tunnels and prediction of water inrush sources[D]. Jinan: Shandong University, 2013.
[18] 姜志海, 岳建华, 刘志新. 矿井瞬变电磁法在老窑水超前探测中的应用[J].工程地球物理学报, 2007, 4(4): 291-294. JIANG Zhihai, YUE Jianhua, LIU Zhixin. Application of mine transient electromagnetic method in forecasting goaf water[J]. Chinese Journalof Engineering Geophysics, 2007, 4(4): 291-294.
[19] 范涛, 赵兆, 吴海, 等. 矿井瞬变电磁多匝回线电感影响消除及曲线偏移研究[J]. 煤炭学报, 2014, 39(5): 932-940. FAN Tao, ZHAO Zhao, WU Hai, et al. Research on inductance effect removing and curve offset for mine TEM with multi small loops[J]. Journal of China Coal Society, 2014, 39(5): 932-940.
[20] 程久龙, 李飞, 彭苏萍, 等. 矿井巷道地球物理方法超前探测研究进展与展望[J]. 煤炭学报, 2014, 39(8): 1742-1750. CHENG Jiulong, LI Fei, PENG Suping, et al. Research progress and development direction on advanced detection in mine roadway working face using geophysical methods[J]. Journal of China Coal Society, 2014, 39(8): 1742-1750.
[21] XUE G Q, CHEN W, CHENG J L, et al. A review of electrical and electromagnetic methods for coal mine exploration in China[J]. IEEE Access, 2019, 7: 177332-177341.
[22] 韩自强. 隧道掌子面附近金属物对瞬变电磁超前地质预报数据的影响及校正研究[J].地球物理学进展, 2022, 37(2): 824-835. HAN Ziqiang. Influence and correction research of metal objects near the tunnel face on TEM advanced geological forecast data[J]. Progress in Geophysics, 2022, 37(2): 824-835.
[23] XUE G Q, LI X, QUAN H J, et al. Physical simulation and application of a new TEM configuration[J]. Environmental Earth Sciences, 2012, 67(5): 1291-1298.
[24] 杨海燕, 刘志新, 张华, 等. 圆锥型场源瞬变电磁法试验研究[J]. 煤田地质与勘探, 2021, 49(6): 107-112. YANG Haiyan, LIU Zhixin, ZHANG Hua, et al. Experimental study on transient electromagnetic method with a conical source[J]. Coal Geology & Exploration, 2021, 49(6): 107-112.
[25] XI Z Z, LONG X, HUANG L, et al. Opposing-coils transient electromagnetic method focused near-surface resolution[J]. Geophysics, 2016,81(5): E279-E285.
[26] 龙霞, 席振铢, 周胜, 等. 等值反磁通原理瞬变电磁法探测薄层能力[J]. 地球物理学进展, 2020, 35(2): 753-759. LONG Xia, XI Zhenzhu, ZHOU Sheng, et al. Detection capability of opposing coils transient electromagnetic method for thin layers[J]. Progress in Geophysics, 2020, 35(2): 753-759.
[27] 刘黎东, 张富翔, 张继锋, 等. 基于等值反磁通的隧道TEM超前探测三维模拟及应用[J]. 地球物理学进展, 2021, 36(6): 2730-2737. LIU Lidong, ZHANG Fuxiang, ZHANG Jifeng, et al. Simulation and application of tunnel TEM advanced detection based on opposing-coils configuration[J].Progress in Geophysics, 2021, 36(6): 2730-2737.
[28] 王亮, 戴云峰, 刘冰, 等. 基于等值反磁通瞬变电磁法快速探测海水入侵研究[J].地球物理学进展, 2023, 38(3): 1397-1407. WANG Liang, DAI Yunfeng, LIU Bing, et al. Research on rapid detection of seawater intrusion based on opposing-coil transient electromagnetic method[J].Progress in Geophysics, 2023, 38(3): 1397-1407.
[29] 程久龙, 邱浩, 叶云涛, 等. 矿井瞬变电磁法波场变换与数据处理方法研究[J]. 煤炭学报, 2013, 38(9): 1646-1650. CHENG Jiulong, QIU Hao, YE Yuntao, et al. Research on wave-field transformation and data processing of the mine transient electromagnetic method[J].Journal of China Coal Society, 2013, 38(9): 1646-1650.
[30] CHEN J, ZHANG Y, LIN T T. Transient electromagnetic machine learning inversion based on pseudo wave field data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5917410.
[31] FAN Y N, LU K L, LI X, et al. Mapping coal water-filled zones using multi-radiation source transient electromagnetic pseudo-seismic Born approximation imaging and apparent resistivity imaging in Gansu, China[J]. Journal of Applied Geophysics, 2022, 203: 104717.
[32] LEE K H, LIU G, MORRISON H F. A new approach to modeling the electromagnetic response of conductive media[J]. Geophysics, 1989, 54(9): 1180-1192.
[33] LEE K H, XIE G Q. A new approach to imaging with low-frequency electromagnetic fields[J]. Geophysics,1993, 58(6): 780-796.
[34] 吴琼. 大回线源电磁场正演与波场变换理论研究[D]. 西安: 长安大学, 2012. WU Qiong. Forward modeling of large loop transient electromagnetic field and wave-field transform theory's study[D]. Xi'an:Chang'an University, 2012.
[35] 智庆全. MTEM波场变换与偏移成像方法研究[D]. 西安: 长安大学, 2015. ZHI Qingquan. Study on wave field transformation and migration imaging of MTEM data[D]. Xi'an: Chang'an University, 2015.
[36] 赵越. 航空瞬变电磁三维成像解释方法研究[D]. 西安: 长安大学, 2016. ZHAO Yue. Research on 3D imaging interpretation of airborne transient electromagnetic data[D]. Xi'an: Chang'an University, 2016.
[37] 张莹莹. 地空瞬变电磁法逆合成孔径成像方法研究[D]. 西安: 长安大学, 2016. ZHANG Yingying. Study on inverse synthetic aperture imaging of ground-airborne transient electromagnetic method[D]. Xi'an: Chang'an University, 2016.
[38] 范涛, 李萍, 赵兆, 等. 钻孔瞬变电磁方法探测越界开采采空区的应用[J]. 煤田地质与勘探, 2022, 50(1): 20-24. FAN Tao, LI Ping, ZHAO Zhao, et al. Application of borehole transient electromagnetic method in detecting the cross-border mining goaf[J]. Coal Geology & Exploration, 2022, 50(1): 20-24.
[39] XUE G Q, YAN Y J, LI X. Pseudo-seismic wavelet transformation of transient electromagnetic response in engineering geology exploration[J].Geophysical Research Letters, 2007, 34(16): L16405.
[40] 薛国强, 李貅, 戚志鹏, 等. 瞬变电磁拟地震子波宽度压缩研究[J]. 地球物理学报, 2011, 54(5): 1384-1390. XUE Guoqiang, LI Xiu, QI Zhipeng, et al. Study of sharpening the TEM pseudo-seismic wave-form[J]. Chinese Journal of Geophysics, 2011, 54(5): 1384-1390.
[41] 李貅, 薛国强. 瞬变电磁法拟地震偏移成像研究[M]. 北京: 科学出版社, 2013: 19-22.
[42] LI X, XUE G Q, YIN C C. Theory and technology of full-zone wave field transformation[M] //Migration Imaging of the Transient Electromagnetic Method. Singapore city, Singapore: Springer Singapore, 2016: 17-37.
[43] LU K, FAN Y, LI X, et al. Transient electromagnetic pseudo wavefield imaging based on the sweep-time preconditioned precise integration algorithm[J]. Journal of Applied Geophysics, 2023, 209: 104937.
[44] 范克睿, 王刚, 鲁凯亮, 等. 虚拟波场降速条件下电性源瞬变电磁垂直磁场分量的波场反变换方法[J]. 地球物理学报, 2023, 66(4): 1743-1757. FAN Kerui, WANG Gang, LU Kailiang, et al. Inverse wavefield transform of vertical magnetic signal of galvanic source TEM when slowing down pseudo-wavefield velocity[J]. Chinese Journal of Geophysics, 2023, 66(4): 1743-1757.
[45] FAN K R, GUO J L, WANG G, et al. A self-adaptive algorithm of inverse wavefield transform for the vertically magnetic components of the loop-source transient electromagnetic data[J]. IEEE Geoscience and Remote Sensing Letters, 2024, 22: 7501005.
[46] 戚志鹏, 李貅, 吴琼, 等. 从瞬变电磁扩散场到拟地震波场的全时域反变换算法[J]. 地球物理学报, 2013, 56(10): 3581-3595. QI Zhipeng, LI Xiu, WU Qiong, et al. A new algorithm for full-time-domain wave-field transformation based on transient electromagnetic method[J]. Chinese Journal of Geophysics, 2013, 56(10): 3581-3595.
[47] LI X, XUE G Q, ZHI Q Q, et al. TEM pseudo-wave field extractions using a modified algorithm[J]. Journal of Environmental and Engineering Geophysics, 2018, 23(1): 33-45.
[48] 薛俊杰, 钟华森, 李海, 等. 瞬变电磁波场转换算法的改进[J]. 地球物理学报, 2018, 61(12): 5077-5083. XUE Junjie, ZHONG Huasen, LI Hai, et al. An improvement to the transformation algorithm for the transient electromagnetic field[J]. Chinese Journal of Geophysics, 2018, 61(12): 5077-5083.
[49] 鲁凯亮, 李貅, 戚志鹏, 等. 瞬变电磁扩散场到虚拟波场的精细积分变换算法[J]. 地球物理学报, 2021, 64(9): 3379-3390. LU Kailiang, LI Xiu, QI Zhipeng, et al. A precise integration transform algorithm for transformation from the transient electromagnetic diffusion field into the pseudo wave field[J]. Chinese Journal of Geophysics, 2021, 64(9): 3379-3390.
[50] SPIES B R. Depth of investigation in electromagnetic sounding methods[J]. Geophysics, 1989, 54(7): 872-888.
[1] 钟建敏, 张亮亮, 何应道, 罗驰恒, 熊逸凡, 王超. 济泺路穿黄北延隧道设计关键技术[J]. 隧道与地下工程灾害防治, 0, (): 1-11.
[2] 杨文东, 刘春天, 张祥, 陈晓鹏, 井文君, 张连震, 王柄淇, 秦昊. 锚索预应力损失与岩体蠕变耦合的理论分析[J]. 隧道与地下工程灾害防治, 2023, 5(2): 33-41.
[3] 黄兴, 张炜, 殷建钢, 施皓, 张晓磊. 填埋场扩建后下穿隧道结构的安全性[J]. 隧道与地下工程灾害防治, 2023, 5(1): 55-63.
[4] 温森, 吴斐, 李胜, 张洛萌. 不同侧压系数和岩石强度下TBM滚刀破岩效率的数值模拟[J]. 隧道与地下工程灾害防治, 2021, 3(4): 9-19.
[5] 黄笑, 肖培伟, 董林鹭, 杨兴国, 徐奴文. 高地应力地下洞室群开挖过程岩体力学响应及破坏机制[J]. 隧道与地下工程灾害防治, 2021, 3(3): 85-93.
[6] 张亮亮,赵世超,孙文昊,何应道. 济南市济泺路穿黄隧道总体设计[J]. 隧道与地下工程灾害防治, 2020, 2(2): 14-20.
[7] 李炼然, 任周洪, 王斌, 张权, 黄灏, 刘吉金, 许浩宇, 郭谦. 等值反磁通瞬变电磁数据的波场反变换方法及其在会泽铅锌矿区井下超前探测中的应用[J]. 隧道与地下工程灾害防治, 0, (): 1-20.
[8] 金志豪,刘涛,黄旭峰,王克忠. 盾构隧道刀盘超挖引起应力释放率的界定方法[J]. 隧道与地下工程灾害防治, 2020, 2(1): 53-60.
[9] 王者超, 周尔康. 应力路径对砂岩真三轴变形宏细观特征影响[J]. 隧道与地下工程灾害防治, 2022, 4(2): 1-10.
[10] 陈峰军, 宗军良, 王祺, 禹海涛. 地面出入式超浅埋盾构隧道静力响应模型试验[J]. 隧道与地下工程灾害防治, 2022, 4(2): 66-72.
[11] 宗军良, 饶倩, 王祺, 禹海涛. 地面出入式盾构隧道动力响应的数值模拟[J]. 隧道与地下工程灾害防治, 2023, 5(3): 63-70.
[12] 钟建敏, 张亮亮, 何应道, 罗驰恒, 熊逸凡, 王超. 济泺路穿黄北延隧道设计关键技术[J]. 隧道与地下工程灾害防治, 2024, 6(4): 72-80.
[13] 陈峰军, 宗军良, 王祺, 禹海涛. 地面出入式超浅埋盾构隧道静力响应模型试验研究[J]. 隧道与地下工程灾害防治, 0, (): 1-.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn