Please wait a minute...
 
隧道与地下工程灾害防治  2022, Vol. 4 Issue (2): 66-72    DOI: 10.19952/j.cnki.2096-5052.2022.02.08
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
地面出入式超浅埋盾构隧道静力响应模型试验
陈峰军1,宗军良2,王祺3,禹海涛3*
1.上海建工集团股份有限公司, 上海 200080;2.上海黄浦江越江设施投资建设发展有限公司, 上海 200003;3.同济大学地下建筑与工程系, 上海 200092
Experimental research on static response of ground penetrating ultra shallow-buried shield tunnel without working shaft
CHEN Fengjun1, ZONG Junliang2, WANG Qi3, YU Haitao3*
1. Shanghai Construction Group Co., Ltd., Shanghai 200080, China;
2. Shanghai Huangpu River Crossing Facility Investment Construction Development Co., Ltd., Shanghai 200003, China;
3. Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China
下载:  PDF (7414KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 以地面出发超浅埋盾构隧道为研究背景,建立相似物理模型,研究地面出入式盾构隧道多工况的静力响应。基于相似比理论,控制分层土弹性模量与原型场地等效,并保证模型盾构隧道横断面刚度和纵向拼装刚度与原型等效,模拟原型超浅埋盾构隧道的受力状态。重点研究在静力作用和地面超载工况下模型的直径变形、接缝张开量和土压力响应,揭示在静力作用下地面出入式盾构隧道的静力响应特征,模拟隧道在运营工况下的结构响应。研究表明,随着埋深从-0.5D(隧道直径)增大至0.5D,隧道的直径变形由竖鸭蛋逐渐转变为横鸭蛋形式,在埋深为-0.1D时直径变形达到最大,纵缝张开量的总体趋势与直径变形呈现正相关性,结构水平向土压力可近似为三角形分布。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈峰军
宗军良
王祺
禹海涛
关键词:  地面出入  超浅埋  盾构隧道  静力响应  模型试验    
Abstract: A similar physical model test was established to study the static response of the ground penetrating shield technology(GPST)tunnel with multiple working conditions. Based on similitude ratio theory, the mechanical state of the prototype tunnel was reproduced by controlling the layered soil modulus and prototype field equivalent and ensuring the cross-sectional and longitudinal stiffness of the shield tunnel after assembling. The diameter distortion, joint deformation, and earth pressure of the model under gravity and overload were tested, therefore, the static response characteristics of the GPST tunnel were investigated. The results showed that with the increase of burial depth from -0.5to 0.5D, the tunnel diameter deformation gradually changed from "vertical egg" to "horizontal egg", and reached the maximum value when the burial depth was -0.1D. Besides, the overall trend of the longitudinal joint opening was positively correlated with the diameter deformation, and the horizontal earth pressure of the structure could be approximated to triangular distribution.
Key words:  GPST    ultra shallow-buried    shield tunnel    static response    model test
收稿日期:  2022-02-10      修回日期:  2022-05-06      发布日期:  2022-06-20     
中图分类号:  U452.28  
基金资助: 上海市科学技术委员会课题资助项目(18DZ1205106)
通讯作者:  禹海涛(1983— ),男,河南泌阳人,博士,教授,博士生导师,国家优秀青年科学基金项目获得者,主要研究方向为地下结构防灾减灾.    E-mail:  yuhaitao@tongji.edu.cn
作者简介:  陈峰军(1984— ),男,江苏泰兴人,硕士,正高级工程师,主要研究方向为隧道与地下工程. E-mail:56991742@qq.com.
引用本文:    
陈峰军, 宗军良, 王祺, 禹海涛. 地面出入式超浅埋盾构隧道静力响应模型试验[J]. 隧道与地下工程灾害防治, 2022, 4(2): 66-72.
CHEN Fengjun, ZONG Junliang, WANG Qi, YU Haitao. Experimental research on static response of ground penetrating ultra shallow-buried shield tunnel without working shaft. Hazard Control in Tunnelling and Underground Engineering, 2022, 4(2): 66-72.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2022/V4/I2/66
[1] 鲍泽辰.超浅覆土工况下隧道管片结构试验的有限元分析[J].土工基础,2020,34(6):689-694. BAO Zechen. Finite element analysis of shallow buried tunnel segment structure tests[J]. Soil Engineering and Foundation, 2020, 34(6): 689-694.
[2] 张子新,胡文,刘超, 等.地面出入式盾构法隧道新技术大型模型试验与工程应用研究[J].岩石力学与工程学报,2013,32(11):2161-2169. ZHANG Zixin, HU Wen, LIU Chao, et al. Investigation of ground pass shield tunnelling method based on large-scale model test and its engineering application[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(11): 2161-2169.
[3] 郑斌.大直径GPST盾构管片稳定装置设计[J].建筑科技,2021,5(5):91-94. ZHENG Bin. Huge diameter GPST shield segment stabilizing device design[J]. Building Technology, 2021, 5(5): 91-94.
[4] 赵辛玮,马永其,滕丽.盾构快速穿越法超浅覆土及负覆土隧道施工预测分析[J].上海大学学报(自然科学),2015,21(4):454-466. ZHAO Xinwei, MA Yongqi, TENG Li. Predictive analysis on shield tunnel using ultra-rapid under pass method[J]. Journal of Shanghai University(Natural Science Edition), 2015, 21(4): 454-466.
[5] 王祺,禹海涛,戴春祥,等.软土超浅埋盾构隧道地震反应分析[J].现代隧道技术,2018,55(增刊2):493-500. WANG Qi, YU Haitao, DAI Chunxiang, et al. Seismic response analysis of ultra-shallow buried shield tunnel in soft soils[J]. Modern Tunnelling Technology, 2018, 55(Suppl.2): 493-500.
[6] DING W Q, JIN Y L, ZHAO W, et al. A computational method for ground penetrating shield tunnel[C] //Proceedings of the Geo-Shanghai 2014 International Conference. Reston, USA: American Society of Civil Engineers, 2014: 227-236.
[7] 吴惠明. 地面出入式盾构隧道结构变形特性及控制研究[D].上海:上海大学,2014. WU Huiming. Study on characteristic analyse and controlling technogy of structure deformation in GPST[D]. Shanghai: Shanghai University, 2014.
[8] 高守栋. 地面出入式盾构施工地层扰动机理及管片受力特性研究[D].广州:广州大学,2020. GAO Shoudong. Study on the strata disturbance and mechanical properties of lining segment during GPST tunneling process[D]. Guangzhou: Guangzhou University, 2020.
[9] 张旭,叶冠林,吴惠明,等.地面出入式盾构隧道受力变形特性数值分析[J].地下空间与工程学报,2016,12(2):436-441. ZHANG Xu, YE Guanlin, WU Huiming, et al. Numerical study on deformation characteristics of ground penetrating shield tunnel[J]. Chinese Journal of Underground Space and Engineering, 2016, 12(2): 436-441.
[10] 高守栋,刘超,张子新,等.地面出入式盾构隧道施工对周边地层扰动研究[J].地下空间与工程学报,2020,16(3):903-914. GAO Shoudong, LIU Chao, ZHANG Zixin, et al. Study on the influence of surrounding strata during GPST tunnelling process[J]. Chinese Journal of Underground Space and Engineering, 2020, 16(3): 903-914.
[11] ISHIBASHI I, ZHANG X J. Unified dynamic shear moduli and damping ratios of sand and clay[J]. Soils and Foundations, 1993, 33(1): 182-191.
[12] WU W F, GE S P, YUAN Y, et al. Seismic response of a cross interchange metro station in soft soil: physical and numerical modeling[J]. Earthquake Engineering & Structural Dynamics, 2021, 50(9): 2294-2313.
[1] 魏纲, 徐天宝, 张治国. 复杂应力路径下波纹钢加固盾构隧道数值分析[J]. 隧道与地下工程灾害防治, 2023, 5(2): 24-32.
[2] 王智, 刘祥勇, 朱先发, 洪小星, 沈一鸣, 张冰利. 小曲率半径隧道施工对盾构管片结构影响[J]. 隧道与地下工程灾害防治, 2023, 5(1): 45-54.
[3] 周旭明, 石钰锋, 张利敏, 张慧鹏, 曹成威, 陈昭阳. 边墙与仰拱连接处缺陷对隧道结构影响试验[J]. 隧道与地下工程灾害防治, 2023, 5(1): 74-80.
[4] 韩兴博,陈子明,苏恩杰,梁晓明,宋桂峰,叶飞. 盾构隧道围岩压力分布规律及作用模式[J]. 隧道与地下工程灾害防治, 2022, 4(4): 34-43.
[5] 喻伟,林赞权,朱彬彬,汪元冶,丁文其,乔亚飞,张晓东,龚琛杰. 盾构隧道防水密封垫材料的高温老化后性能[J]. 隧道与地下工程灾害防治, 2022, 4(4): 52-58.
[6] 丁智,李鑫家,张霄. 基于机器学习的盾构掘进地表变形预测研究与展望[J]. 隧道与地下工程灾害防治, 2022, 4(3): 1-9.
[7] 吕玺琳,赵庾成,曾盛. 砂层中盾构隧道开挖面稳定性物理模型试验[J]. 隧道与地下工程灾害防治, 2022, 4(3): 67-76.
[8] 潘秋景,李晓宙,黄杉,汪来,王树英,方国光. 机器学习在盾构隧道智能施工中的应用——综述与展望[J]. 隧道与地下工程灾害防治, 2022, 4(3): 10-30.
[9] 赵辰洋,罗毛毛,邱静怡,倪芃芃,赵锋烽. 盾构隧道施工引起地层变形预测方法综述[J]. 隧道与地下工程灾害防治, 2022, 4(3): 31-46.
[10] 张治国,程志翔,陈杰,吴钟腾,李云正. 盾构隧道接缝渗漏水诱发既有管线变形模型试验[J]. 隧道与地下工程灾害防治, 2022, 4(3): 77-91.
[11] 刘祥勇,张鑫,王军,赵涛宁,朱先发. 盾构施工对邻近建筑物群结构影响评价[J]. 隧道与地下工程灾害防治, 2022, 4(3): 99-106.
[12] 黄昕, 谷冠思, 张子新, 李昀. 考虑渗流的泥水平衡盾构隧道稳定性数值模拟[J]. 隧道与地下工程灾害防治, 2022, 4(2): 28-38.
[13] 许有俊, 王智广, 张旭, 郭飞, 高胜雷, 杨昆. 小转弯半径盾构隧道施工引起的地层变形特征[J]. 隧道与地下工程灾害防治, 2022, 4(2): 11-18.
[14] 周勇, 李召峰, 左志武, 王川, 王钰鑫, 林春金, 张新, 张乾青, 姚望, 王凯. 桩侧注浆提升粉质黏土地层既有桩基承载力试验研究[J]. 隧道与地下工程灾害防治, 2022, 4(1): 38-47.
[15] 马少俊, 李鑫家, 王乔坎, 丁智. 某深基坑开挖对邻近既有盾构隧道影响实测分析[J]. 隧道与地下工程灾害防治, 2022, 4(1): 86-94.
[1] QIAN Qihu. Scientific use of the urban underground space to construction the harmonious livable and beautiful city[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 1 -7 .
[2] DENG Mingjiang, LIU Bin. Challenges, countermeasures and development direction of geological forward-prospecting for TBM cluster tunneling in super-long tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 8 -19 .
[3] DING Xiuli, ZHANG Yuting, ZHANG Chuanjian, YAN Tianyou, HUANG Shuling. Review on countermeasures and their adaptability evaluation to tunnels crossing active faults[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 20 -35 .
[4] JIAO Yuyong, ZHANG Weishe, OU Guangzhao, ZOU Junpeng, CHEN Guanghui. Review of the evolution and mitigation of the water-inrush disaster in drilling-and-blasting excavated deep-buried tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 36 -46 .
[5] ZHANG Qingsong, ZHANG Lianzhen, LI Peng, FENG Xiao. New progress in grouting reinforcement theory of water-rich soft stratum in underground engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 47 -57 .
[6] XIA Kaiwen, XU Ying, CHEN Rong. Dynamic tests of rocks subjected to simulated deep underground environments[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 58 -75 .
[7] HONG Kairong. Study on rock breaking and wear of TBM hob in high-strength high-abrasion stratum[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 76 -85 .
[8] TAN Zhongsheng. Application experimental study of high-strength lattice girders with heat treatment in tunnel engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 86 -92 .
[9] CHEN Jianxun, LUO Yanbin. The stability of structure and its control technology for lager-span loess tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 93 -101 .
[10] JING Hongwen, YU Liyuan, SU Haijian, GU Jincai, YIN Qian. Development and application of catastrophic experiment system for water inrush in surrounding rock of deep tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 102 -110 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn