Please wait a minute...
 
隧道与地下工程灾害防治  2021, Vol. 3 Issue (3): 20-28    DOI: 10.19952/j.cnki.2096-5052.2021.03.03
  先进计算方法在隧道与岩土工程中的应用 本期目录 | 过刊浏览 | 高级检索 |
基于连续-离散耦合方法的隧道开挖对近断层的影响机制研究
禹海涛1,陈志伟2
1. 同济大学岩土及地下工程教育部重点实验室, 上海 200092;2. 同济大学地下建筑与工程系, 上海 200092
Influence mechanism of tunnel excavation on adjacent fault based on FDM-DEM coupling method
YU Haitao1, CHEN Zhiwei2
1. Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University, Shanghai 200092, China;
2. Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China
下载:  PDF (12674KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 隧道开挖通常会引起临近断层的错动,并进一步诱发地震等灾害,但目前物理机制尚不清晰。为探究隧道开挖诱发近断层错动的物理机制,采用连续介质力学与离散介质力学相耦合的方法建立近断层隧道开挖数值模型,其中采用离散元方法(distinct element method, DEM)模拟断层破碎带的细观力学行为,采用有限差分法(finite difference method, FDM)描述断层上盘、下盘宏观动力特征,基于多因素影响分析,分析结果表明:隧道开挖引起断层错动可以划分为错动孕育阶段、错动加速阶段、错动变缓阶段、稳定阶段;断层破碎带与上、下盘岩体相对刚度较小,开挖导致的岩体变形无法通过破碎带向另一侧传递,由此引起的上、下盘岩体变形不连续、不协调是断层发生错动的主要原因;开挖隧道位于上盘时,隧道埋深以上的断层呈现出正断层错动模式,埋深以下的断层呈现出逆断层模式,而隧道位于下盘时,结果相反;距离断层越远,隧道开挖引起的断层错动量越小,不同深度处的错动量最终均趋于0,同时,距离的增加还可能引起隧道位置以下断层错动形式的改变;隧道位于上盘时,断层的错动量大体上随倾角的增大而减小;隧道位于下盘时,隧道埋深以上的断层错动量随倾角增大而增大,隧道埋深以下的断层错动量则不断减小;隧道埋深处的断层错动量先随着倾角增大而减小至0,而后错动形式发生改变,错动量继续增加。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
禹海涛
陈志伟
关键词:  断层错动  人工合成岩体  隧道开挖  多尺度耦合  诱发地震    
Abstract: Tunneling usually causes the dislocation of adjacent faults and further induces disasters such as earthquakes, but the physical mechanism is still not clear. A numerical model of near fault tunnel excavation was established by coupling mechanics of continuous media with mechanics of discrete medium. The discrete element method(DEM)was used to simulate the meso-mechanical behavior of the fault fracture zone, and the finite difference method(FDM)was used to describe the macro-dynamic characteristics of the upper and lower walls of the fault. Based on the multi-factor influence analysis, the physical mechanism of the near-fault dislocation induced by tunnel excavation was explored. The analysis results showed that the fault dislocation caused by tunnel excavation could be divided into four stages: incubation stage, acceleration stage, slowing stage and stability stage. The interaction between the fracture zone and the upper and lower walls was weak, and the rock mass deformation caused by excavation was difficult to propagate through the fracture zone to the other side. The discontinuity and disharmony of the deformation of the upper and lower walls were the main reasons for the fault dislocation. When the tunnel was located in the hanging wall, the fault displacement above the tunnel depth was positive, showing the form of positive fault, while the fault displacement below the tunnel depth was negative, showing the form of reverse fault. When the tunnel was located in the footwall, the result was opposite. The farther the tunnel was from the fault, the smaller the fault displacement caused by tunnel excavation was, and the fault displacement at different depths finally approached to 0. The increase of distance might also lead to the change of fault dislocation form below the tunnel depth. When the tunnel was located in the hanging wall, the fault displacement decreased with the increase of dip angle. When the tunnel was located at the footwall, the fault displacement above the buried depth of the tunnel increased with the increase of dip angle. The fault displacement under the buried depth of the tunnel decreased continuously. The fault displacement at the buried depth of the tunnel first decreased to 0 with the increase of dip angle, and then the dislocation form changed, and the displacement continued to increase.
Key words:  fault dislocation    synthetic rock mass    tunnel excavation    multi-scale coupling    induced seismicity
收稿日期:  2021-07-01      修回日期:  2021-09-05      发布日期:  2021-09-20     
中图分类号:  U45  
基金资助: 国家自然科学基金资助项目(41922059,51678438);国家重点研发计划项目(2017YFC1500703 & 2018YFC1504305);上海市科委重点支撑课题(18DZ1205103)
作者简介:  禹海涛(1983— ),男,河南泌阳人,博士,教授,博士生导师,主要研究方向为地下结构抗震与抗爆动力学. E-mail: yuhaitao@tongji.edu.cn
引用本文:    
禹海涛, 陈志伟. 基于连续-离散耦合方法的隧道开挖对近断层的影响机制研究[J]. 隧道与地下工程灾害防治, 2021, 3(3): 20-28.
YU Haitao, CHEN Zhiwei. Influence mechanism of tunnel excavation on adjacent fault based on FDM-DEM coupling method. Hazard Control in Tunnelling and Underground Engineering, 2021, 3(3): 20-28.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2021/V3/I3/20
[1] 张广泽,邓建辉,王栋,等.隧道围岩构造软岩大变形发生机理及分级方法[J].工程科学与技术, 2021,53(1):1-12. ZHANG Guangze, DENG Jianhui, WANG Dong, et al. Mechanism and classification of tectonic-induced large deformation of soft rock tunnels[J]. Advanced Engineering Sciences, 2021, 53(1):1-12.
[2] 李建旺,冯仕文,周喻.隧道下穿采空区施工围岩灾变演化的力学机制[J].中南大学学报(自然科学版), 2021,52(2):543-554. LI Jianwang, FENG Shiwen, ZHOU Yu. Mechanical mechanism of surrounding rock catastrophe evolution during construction of tunnel under goaf[J]. Journal of Central South University(Science and Technology), 2021, 52(2):543-554.
[3] MANOUCHEHRIAN A, CAI M. Numerical modeling of rockburst near fault zones in deep tunnels[J]. Tunnelling and Underground Space Technology, 2018, 80:164-180.
[4] GAO F, KANG H, LI J. Numerical simulation of fault-slip rockbursts using the distinct element method[J]. Tunnelling and Underground Space Technology, 2021, 110:103805.
[5] 周宗青,李利平,石少帅,等. 隧道突涌水机制与渗透破坏灾变过程模拟研究[J]. 岩土力学, 2020,41(11):3621-3631. ZHOU Zongqing, LI Liping, SHI Shaoshuai, et al. Study on tunnel water inrush mechanism and simulation of seepage failure process[J]. Rock and Soil Mechanics, 2020, 41(11):3621-3631.
[6] QUICK H, MICHAEL J, BERGMEISTER K, et al. Aicha-mauls on the brenner base tunnel-status of the works and results[J]. Geomechanics and Tunnelling, 2010, 3(5): 520-533.
[7] HUSEN S, KISSLING E, DESCHWANDEN A V. Induced seismicity during the construction of the Gotthard Base Tunnel, Switzerland: hypocenter locations and source dimensions[J]. Journal of Seismology, 2012, 16(2):195-213.
[8] 赵海军,马凤山,李国庆,等. 断层上下盘开挖引起岩移的断层效应[J]. 岩土工程学报, 2008(9):1372-1375. ZHAO Haijun, MA Fengshan, LI Guoqing, et al. Fault effect due to underground excavation in hangingwalls and footwalls of faults[J]. Chinese Journal of Geotechnical Engineering, 2008(9):1372-1375.
[9] 李忠华,包思远,尹万蕾,等. 巨型逆冲断层开采扰动活化条件研究[J].采矿与安全工程学报, 2019,36(4):762-767. LI Zhonghua, BAO Siyuan, YIN Wanlei, et al. Study on the activation condition of giant thrust fault under mining disturbance[J]. Journal of Mining & Safety Engineering, 2019, 36(4):762-767.
[10] KHADEMIAN Z. Studies of seismicity generated by unstable failures around circular excavations[C] //50th US Rock Mechanics/Geomechanics Symposium. Houston, US: American rock mechanics association, 2016.
[11] RINALDI A P, URPI L. Fault reactivation induced by tunneling activity in clay material: hints from numerical modeling [J]. Tunnelling and Underground Space Technology, 2020, 102:103453.
[12] Itasca Consulting Group Inc.. PFC 6.0 documentation [Z]. Minneapolis, US: Itasca, 2019.
[13] 赵伟华, 黄润秋. 基于SRM的裂隙岩质边坡潜在失稳路径分析[J]. 岩石力学与工程学报, 2018, 37(8):1843-1855. ZHAO Weihua, HUANG Runqiu. Potential failure paths of fractured rock slope based on synthetic rock mass(SRM)method[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(8):1843-1855.
[1] 毛浩宇, 徐奴文, 孙悦鹏, 周相, 丁新潮, 董林鹭. 基于微震能量分形维数的围岩变形预警研究[J]. 隧道与地下工程灾害防治, 0, (): 1-0.
[2] 宗军良, 饶倩, 王祺, 禹海涛. 地面出入式盾构隧道动力响应的数值模拟[J]. 隧道与地下工程灾害防治, 0, (): 1-.
[3] 宫凤强, 何志超. 钻孔卸压防治岩爆机理的试验研究进展与展望[J]. 隧道与地下工程灾害防治, 2023, 5(2): 1-23.
[4] 杨文东, 刘春天, 张祥, 陈晓鹏, 井文君, 张连震, 王柄淇, 秦昊. 锚索预应力损失与岩体蠕变耦合的理论分析[J]. 隧道与地下工程灾害防治, 2023, 5(2): 33-41.
[5] 张亮亮. 纵向排烟V形坡隧道火灾烟流特性现场火灾试验研究[J]. 隧道与地下工程灾害防治, 2023, 5(2): 71-79.
[6] 高搏, 龙建平, 吴恺, 骆建军. 海相地层浅埋暗挖隧道水平旋喷桩超前支护地层变形规律分析[J]. 隧道与地下工程灾害防治, 0, (): 1-10.
[7] 王智, 刘祥勇, 朱先发, 洪小星, 沈一鸣, 张冰利. 小曲率半径隧道施工对盾构管片结构影响分析[J]. 隧道与地下工程灾害防治, 0, (): 1-.
[8] 党晓宇, 马劲松. 基于桩板组合结构等代仰拱的公路隧道加固方案[J]. 隧道与地下工程灾害防治, 0, (): 1-7.
[9] 马安震, 谭海星, 刘洋, 关少钰. 复杂环境下大断面矩形顶管隧道管节设计[J]. 隧道与地下工程灾害防治, 0, (): 1-9.
[10] 韩兴博, 陈子明, 苏恩杰, 梁晓明, 宋桂峰, 叶飞. 盾构隧道围岩压力分布规律及作用模式初步探究[J]. 隧道与地下工程灾害防治, 0, (): 1-.
[11] 温森,吴斐,李胜,张洛萌. 不同侧压系数和岩石强度下TBM滚刀破岩效率的数值模拟[J]. 隧道与地下工程灾害防治, 2021, 3(4): 9-19.
[12] 郭新新,朱安龙,王万平,汪波,王智佼,王振宇. 高应力炭质板岩隧道大变形特征及其机理分析[J]. 隧道与地下工程灾害防治, 2021, 3(4): 29-39.
[13] 王密田,王迎超,王楠,冯帅,李文豪,羊嘉杰. 降雨条件下断层隧道突水灾变演化规律[J]. 隧道与地下工程灾害防治, 2021, 3(4): 40-52.
[14] 尹洪武,朱耿德,朱耿刚,葛鑫博. 超深地层盐岩单轴压缩损伤演化过程分析[J]. 隧道与地下工程灾害防治, 2021, 3(4): 53-60.
[15] 柴宝红,方布雷,王岩,丁昊晖. 隧道废水小粒径悬浮物微絮凝法快速处理技术[J]. 隧道与地下工程灾害防治, 2021, 3(4): 61-67.
[1] QIAN Qihu. Scientific use of the urban underground space to construction the harmonious livable and beautiful city[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 1 -7 .
[2] DENG Mingjiang, LIU Bin. Challenges, countermeasures and development direction of geological forward-prospecting for TBM cluster tunneling in super-long tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 8 -19 .
[3] DING Xiuli, ZHANG Yuting, ZHANG Chuanjian, YAN Tianyou, HUANG Shuling. Review on countermeasures and their adaptability evaluation to tunnels crossing active faults[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 20 -35 .
[4] JIAO Yuyong, ZHANG Weishe, OU Guangzhao, ZOU Junpeng, CHEN Guanghui. Review of the evolution and mitigation of the water-inrush disaster in drilling-and-blasting excavated deep-buried tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 36 -46 .
[5] ZHANG Qingsong, ZHANG Lianzhen, LI Peng, FENG Xiao. New progress in grouting reinforcement theory of water-rich soft stratum in underground engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 47 -57 .
[6] XIA Kaiwen, XU Ying, CHEN Rong. Dynamic tests of rocks subjected to simulated deep underground environments[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 58 -75 .
[7] HONG Kairong. Study on rock breaking and wear of TBM hob in high-strength high-abrasion stratum[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 76 -85 .
[8] TAN Zhongsheng. Application experimental study of high-strength lattice girders with heat treatment in tunnel engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 86 -92 .
[9] CHEN Jianxun, LUO Yanbin. The stability of structure and its control technology for lager-span loess tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 93 -101 .
[10] JING Hongwen, YU Liyuan, SU Haijian, GU Jincai, YIN Qian. Development and application of catastrophic experiment system for water inrush in surrounding rock of deep tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 102 -110 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn