Stratum deformation characteristics caused by construction of shield tunnel with a small turning radius
XU Youjun1,2,3, WANG Zhiguang1,2,3, ZHANG Xu1,2,3*, GUO Fei4, GAO Shenglei4, YANG Kun4
1. School of Civil Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, Inner Mongolia, China; 2. Academician Workstation of Mine Safety and Underground Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, Inner Mongolia, China; 3. Engineering Research Center of Urban Underground Engineering at Universities of Inner Mongolia Autonomous Region, Baotou 014010, Inner Mongolia, China; 4. Beijing Municipal Construction Group Co., Ltd., Beijing 100048, China
Abstract: Based on a shield tunnel with a small turning radius project, the stratum deformation characteristics caused by the construction of shield tunnel with a small turning radius and the influence law of tunnel buried depth on stratum deformation were studied through analyzing on-site measurement and numerical simulation. The results showed that the on-site measured data were consistent with the simulation results. The shallower the tunnel was buried, the smaller the surface deformation was. The overbreak made the surface deformation inside the curve larger and caused the centerline of the sedimentation tank to offset to the overbreak side in the meantime. The horizontal deformation characteristics of the strata on both sides of the curve were significantly different from those of the linear tunnel. The stratum on the inner side was disturbed more seriously, which should be paid enough attention to. The influence law of tunnel buried depth on the horizontal deformation of stratum on both sides of the curve was different: the shallower the tunnel was buried, the greater the horizontal deformation of the strata inside the curve was and the smaller that outside the curve was.
许有俊, 王智广, 张旭, 郭飞, 高胜雷, 杨昆. 小转弯半径盾构隧道施工引起的地层变形特征[J]. 隧道与地下工程灾害防治, 2022, 4(2): 11-18.
XU Youjun, WANG Zhiguang, ZHANG Xu, GUO Fei, GAO Shenglei, YANG Kun. Stratum deformation characteristics caused by construction of shield tunnel with a small turning radius. Hazard Control in Tunnelling and Underground Engineering, 2022, 4(2): 11-18.
[1] 张旭,黄诗闵,许有俊,等.衬砌背后空洞对连拱隧道结构受力和破坏的影响研究[J].隧道建设(中英文),2022,42(1):90-102. ZHANG Xu, HUANG Shimin, XU Youjun, et al. Impact of voids behind lining on stress and failure of double-arch tunnels[J]. Tunnel Construction, 2022, 42(1): 90-102. [2] 陈丹,刘喆,刘建友,等.铁路盾构隧道智能建造技术现状与展望[J].隧道建设(中英文),2021,41(6):923. CHEN Dan, LIU Zhe, LIU Jianyou, et al. State-of-art and prospects for intelligent construction technology for railway shield tunneling[J]. Tunnel Construction, 2021, 41(6): 923. [3] 何川,封坤,方勇.盾构法修建地铁隧道的技术现状与展望[J].西南交通大学学报,2015,50(1):97-109. HE Chuan, FENG Kun, FANG Yong. Review and prospects on constructing technologies of metro tunnels using shield tunnelling method[J]. Journal of Southwest Jiaotong University, 2015, 50(1): 97-109. [4] 《中国公路学报》编辑部.中国交通隧道工程学术研究综述:2022[J].中国公路学报,2022,35(4):1-40. Editorial Department of China Journal of Highway and Transport. Review on China's traffic tunnel engineering research: 2022[J]. China Journal of Highway and Transport, 2022, 35(4): 1-40. [5] 贾勇.盾构施工地层变形实测与三维数值模拟及参数分析[D].天津:天津大学,2010. JIA Yong. Ground deformation measurement and three-dimensional numerical simulation and parametric analysis by shield driven[D]. Tianjin: Tianjin University, 2010. [6] 唐晓武,朱季,刘维,等.盾构施工过程中的土体变形研究[J].岩石力学与工程学报,2010,29(2):417-422. TANG Xiaowu, ZHU Ji, LIU Wei, et al. Research on soil deformation during shield construction process[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(2): 417-422. [7] 梁荣柱,夏唐代,林存刚,等.盾构推进引起地表变形及深层土体水平位移分析[J].岩石力学与工程学报,2015,34(3):583-593. LIANG Rongzhu, XIA Tangdai, LIN Cungang, et al. Analysis of ground surface displacement and horizontal movement of deep soils induced by shield advancing[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(3): 583-593. [8] 房倩,杜建明,王赶,等.砂土隧道开挖地层变形规律及影响因素分析[J].隧道与地下工程灾害防治,2020,2(3):67-76. FANG Qian, DU Jianming, WANG Gan, et al. Stratum deformation laws and influence factors analysis of tunnel excavation in sand[J]. Hazard Control in Tunnelling and Underground Engineering, 2020, 2(3): 67-76. [9] 陈剑,李智明.急曲线隧道盾构超挖量及铰接角的理论算法[J].中国公路学报,2017,30(8):66-73. CHEN Jian, LI Zhiming. Theoretical algorithm for over-excavation volume and hinged articulation angle during shield tunneling along sharp curves[J]. China Journal of Highway and Transport, 2017, 30(8): 66-73. [10] 邓皇适,傅鹤林,史越.小转弯半径曲线盾构隧道开挖引发地表沉降计算[J].岩土工程学报,2021,43(1):165-173. DENG Huangshi, FU Helin, SHI Yue. Calculation of surface settlement caused by excavation of shield tunnels with small turning radius[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(1): 165-173. [11] 孙捷城,路林海,王国富,等.小半径曲线盾构隧道掘进施工地表变形计算[J].中国铁道科学,2019,40(5):63-72. SUN Jiecheng, LU Linhai, WANG Guofu, et al. Calculation of surface settlement caused by excavation of shield tunnels with small turning radius[J]. China Railway Science, 2019, 40(5): 63-72. [12] LI S H, ZHANG M J, LI P F. Analytical solutions to ground settlement induced by ground loss and construction loadings during curved shield tunneling[J]. Journal of Zhejiang University: Science A, 2021, 22(4): 296-313. [13] 潘泓,苏文渊,翟国林,等.小曲率半径转弯隧道盾构施工扰动实测分析[J].岩石力学与工程学报,2017,36(4):1024-1031. PAN Hong, SU Wenyuan, ZHAI Guolin, et al. Soil disturbance induced by shield advancing through a small radius path[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(4): 1024-1031. [14] 李奎,李志业,高波.既有地铁车站结构安全性评估方法研究[J].岩土力学,2011,32(4):1193-1199. LI Kui, LI Zhiye, GAO Bo. Study of safety evaluation method for existing metro station structures[J]. Rock and Soil Mechanics, 2011, 32(4): 1193-1199. [15] 张旭,张成平,韩凯航,等.隧道下穿既有地铁车站施工结构沉降控制案例研究[J].岩土工程学报,2017,39(4): 759-766. ZHANG Xu, ZHANG Chengping, HAN Kaihang, et al. Case study of control technology of Structural settlements due to tunnelling beneath a subway station[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(4): 759-766. [16] 潘政. 隧道近距离下穿地铁既有线不等强注浆控制变形技术研究[D].北京:北京交通大学,2017. PAN Zheng. Research on the deformation control technology of unequal strength grouting in tunnel undercrossing existing subway at super close range[D]. Beijing: Beijing Jiaotong University, 2017. [17] 中国建筑科学研究院.混凝土结构设计规范:GB 50010—2010[S].北京:中国建筑工业出版社:2011. [18] 黄大维,周顺华,王秀志,等.模型盾构隧道管片纵缝接头设计方法[J].岩土工程学报,2015,37(6):1068-1076. HUANG Dawei, ZHOU Shunhua, WANG Xiuzhi, et al. Design method for longitudinal segment joints of shield tunnel model[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(6): 1068-1076. [19] 郭瑞,何川.盾构隧道管片衬砌结构稳定性研究[J].中国公路学报,2015,28(6):74-81. GUO Rui, HE Chuan. Study on stability of segment lining structure for shield tunnel[J]. China Journal of Highway and Transport, 2015, 28(6): 74-81. [20] 中华人民共和国住房和城乡建设部.钢结构设计标准:GB 50017—2017[S].北京:中国建筑工业出版社:2017. [21] 徐干成,李成学,王后裕,等.地铁盾构隧道下穿京津城际高速铁路影响分析[J].岩土力学,2009,30(增刊2):269-272. XU Gancheng, LI Chengxue, WANG Houyu, et al. Analysis of influence of metro shield tunneling crossing underneath high speed railway[J]. Rock and Soil Mechanics, 2009, 30(Suppl.2): 269-272. [22] 施有志,王晨飞,赵花丽,等.海底盾构隧道掘进过程数值模拟研究[J].工程地质学报,2021,29(6):1887-1897. SHI Youzhi, WANG Chenfei, ZHAO Huali, et al. Numerical simulation of subsea shield tunneling process[J]. Journal of Engineering Geology, 2021, 29(6): 1887-1897.