Please wait a minute...
 
隧道与地下工程灾害防治  2023, Vol. 5 Issue (4): 57-64    DOI: 10.19952/j.cnki.2096-5052.2023.04.06
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
酸性腐蚀下混凝土试件物理力学性能演化规律
王晖1,黄昕1,2*,金国龙1,3
1.同济大学地下建筑与工程系, 上海 200092;2.新疆大学建筑工程学院, 新疆 乌鲁木齐 830047;3.中船第九设计研究院工程有限公司, 上海 200063
The evolution of physical and mechanical properties of concrete specimens under acid corrosion
WANG Hui1, HUANG Xin1,2*, JIN Guolong1,3
1. Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China;
2. College of Civil Engineering and Architecture, Xinjiang University, Urumqi 830047, Xinjiang, China;
3. China Shipbuilding NDRI Engineering Co., Ltd., Shanghai 200063, China
下载:  PDF (7734KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为分析硫酸腐蚀对深埋排水调蓄隧道(简称“深隧”)衬砌结构力学性能的影响,通过对钢纤维体积率为0%和1%的混凝土标准试件开展初始pH=1的硫酸腐蚀试验,考虑单面浸泡和全周浸泡两种腐蚀工况,对不同腐蚀时间下混凝土试件表面pH值、质量变化率、单轴抗压强度和反应产物进行系统分析。结果表明:混凝土强度随腐蚀时间呈非线性变化;由于钢纤维的掺加抵抗了硫酸溶液的扩散,使得腐蚀前期反应进程减慢、反应产物减少,酸腐蚀浸泡下钢纤维混凝土强度和质量的增加速率不及同等条件下的素混凝土;全周浸泡下混凝土试件的质量增加速率大于同等条件下单面浸泡的试件,结合XRD分析可知,反应后生成了石膏,而全周腐蚀与硫酸的接触面更大,因而反应产物生成更快,初期强度和质量也增加更快。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王晖
黄昕
金国龙
关键词:  深埋排水调蓄隧道  耐久性  硫酸腐蚀  物理力学性能    
Abstract: In order to analyze the influence of sulfuric acid corrosion on the mechanical properties of the deep water storage and sewage tunnel lining structure(short for “deep tunnel”), this research carried out sulfuric acid corrosion tests with initial pH=1 on the standard concrete specimens with a steel fiber volume ratio of 0% and 1%, and considered two corrosion conditions of single-face and all-face immersion. The surface pH value, mass change rate, uniaxial compressive strength and reaction products of concrete specimens under different corrosion time were systematically analyzed. The results showed that the concrete's strength changed nonlinearly with corrosion time. Because the addition of steel fiber resists the diffusion of sulfuric acid, the reaction process in the early stage of corrosion was slowed down and the reaction products were reduced. Therefore, the strength and quality of steel fiber concrete under acid corrosion immersion did not change as rapidly as that of plain concrete under the same condition. The mass increase rate of concrete specimens under all-face immersion was greater than that of specimens soaked on one side under the same conditions. Combined with XRD analysis, it could be seen that gypsum was formed after reaction. The contact area between all-face corrosion and sulfuric acid was larger, so the reaction products were generated faster, and the corresponding strength and mass increase were also faster.
Key words:  deep water storage and sewage tunnel    durability    sulfuric acid corrosion    physical and mechanical property
收稿日期:  2023-09-02      修回日期:  2023-11-01      发布日期:  2023-12-19     
中图分类号:  U43  
基金资助: 国家自然科学基金面上资助项目(52278407);中央高校基本科研业务费资助项目(22120210573)
通讯作者:  黄昕(1985— ),男,福建南平人,副教授,博士生导师,博士,主要研究方向为地下工程安全控制。    E-mail:  xhuang@tongji.edu.cn
作者简介:  王晖(1998— ),男,山西吕梁人,硕士研究生,主要研究方向为隧道耐久性. E-mail:2132364@tongji.edu.cn
引用本文:    
王晖, 黄昕, 金国龙. 酸性腐蚀下混凝土试件物理力学性能演化规律[J]. 隧道与地下工程灾害防治, 2023, 5(4): 57-64.
WANG Hui, HUANG Xin, JIN Guolong. The evolution of physical and mechanical properties of concrete specimens under acid corrosion. Hazard Control in Tunnelling and Underground Engineering, 2023, 5(4): 57-64.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2023/V5/I4/57
[1] 高始军. 超大直径长距离跨海高铁盾构隧道——广湛铁路湛江湾海底隧道项目介绍[J]. 隧道与地下工程灾害防治, 2021, 3(4): 91-94. GAO Shijun. Super-large diameter and long-distance cross-sea high-speed rail shield tunnel—introduction of Zhanjiang Bay Subsea Tunnel Project of Guangzhou-Zhanjiang Railway[J]. Hazard Control in Tunnelling and Underground Engineering, 2021, 3(4): 91-94.
[2] 宋嘉美, 高祯, 杨园晶,等. 深圳市前海——南山排水深隧系统工程设计[J]. 中国给水排水, 2021, 37(18): 76-81. SONG Jiamei, GAO Zhen, YANG Yuanjing, et al. Design of Qianhai-Nanshan deep tunnel drainage system in Shenzhen[J]. China Water & Wastewater, 2021, 37(18): 76-81.
[3] 王晓鹏. 苏州河深隧调蓄工程试验段建造管理关键技术[J]. 中国市政工程, 2022(3): 30-32. WANG Xiaopeng. Key technologies for construction management of Suzhou Creek Deep Tunnel Regulation & Storage Project test section[J]. China Municipal Engineering, 2022(3): 30-32.
[4] 宋战平, 刘彦龙, 张玉伟. 黄土隧道深浅埋界限划分研究现状及展望[J]. 隧道与地下工程灾害防治, 2021, 3(2): 1-15. SONG Zhanping, LIU Yanlong, ZHANG Yuwei. Research and prospect of demarcation of deep and shallow buried in loess tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2021, 3(2): 1-15.
[5] YUAN H F, DANGLA P, CHATELLIER P, et al. Degradation modelling of concrete submitted to sulfuric acid attack[J]. Cement and Concrete Research, 2013, 53: 267-277.
[6] 刘江林. 酸雨环境下混凝土宏细观受压性能试验研究[D]. 大连: 大连海事大学, 2009. LIU Jianglin. Experimental study on macro-meso compressive property of concrete exposed to simulated acid rain environment[D].Dalian: Dalian Maritime University, 2009.
[7] 强跃, 李莉, 何泽平. 钢纤维混凝土抗酸性腐蚀环境的试验研究[J]. 混凝土, 2011(6): 41-42. QIANG Yue, LI Li, HE Zeping. Test research on the steel fiber reinforced concrete against the acid environment[J]. Concrete, 2011(6): 41-42.
[8] 杨凯. 酸性水腐蚀下混凝土性能的劣化与防腐技术研究[D]. 武汉: 武汉理工大学, 2011. YANG Kai. Research on properties deterioration and corrosion prevention technology of concrete in acidic water[D].Wuhan: Wuhan University of Technology, 2011.
[9] 李北星, 周长泉, 蔡老虎, 等. 硫酸环境作用下粉煤灰混凝土性能劣化时变规律[J]. 材料科学与工程学报, 2014, 32(6): 809-815. LI Beixing, ZHOU Changquan, CAI Laohu, et al. Time-dependent rules of performance degradation of fly ash concretes in sulfuric acid environments[J]. Journal of Materials Science and Engineering, 2014, 32(6): 809-815.
[10] 曾晓辉, 杨凯, 王平,等. 模拟酸雨对板式无砟轨道CA砂浆的侵蚀破坏机理[J]. 建筑材料学报, 2016, 19(3): 472-478. ZENG Xiaohui, YANG Kai, WANG Ping, et al. Erosion damage mechanism of CA mortar in slab ballastless track under simulating acid rain[J]. Journal of Building Materials, 2016, 19(3): 472-478.
[11] XIAO J, QU W J, LI W G, et al. Investigation on effect of aggregate on three non-destructive testing properties of concrete subjected to sulfuric acid attack[J]. Construction and Building Materials, 2016,115:486-495.
[12] 阴琪翔, 侯明姣, 杜健民,等. 硫酸溶液中混凝土的腐蚀速率研究[J]. 混凝土, 2017(11): 74-76. YIN Qixiang, HOU Mingjiao, DU Jianmin, et al. Research on the corrosion rate of concrete under sulfuric acid solution[J]. Concrete, 2017(11): 74-76.
[13] 阴琪翔, 侯明姣, 杜健民,等. 硫酸溶液中水灰比对混凝土腐蚀速率影响研究[J]. 混凝土, 2018(1):61-63. YIN Qixiang, HOU Mingjiao, DU Jianmin, et al. Research of water to ash ratio on the corrosion rate of concrete under sulfuric acid solution[J]. Concrete, 2018(1):61-63.
[14] 王海柱. 酸性腐蚀环境中纤维混凝土耐久性退化的试验研究[D].杭州: 浙江工业大学, 2018. WANG Haizhu. An experimental study on the deterioration of properties of fiber-reinforced concrete in acid corrosive environments[D]. Hangzhou: Zhejiang University of Technology, 2018.
[15] KHAN H A, CASTEL A, KHAN M S H, et al. Durability of calcium aluminate and sulphate resistant Portland cement based mortars in aggressive sewer environment and sulphuric acid[J]. Cement and Concrete Research, 2019, 124:105852.
[16] 闻宝联. 城市污水环境下混凝土腐蚀及耐久性研究[D]. 天津: 天津大学, 2005. WEN Baolian. The study on corrosion and durability of concrete in municipal sewerage[D].Tianjin: Tianjin University, 2005.
[1] 王剑宏,常洪雷,刘健,小泉淳. 水下盾构隧道耐久性与全生命周期设计[J]. 隧道与地下工程灾害防治, 2020, 2(2): 1-13.
[1] QIAN Qihu. Scientific use of the urban underground space to construction the harmonious livable and beautiful city[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 1 -7 .
[2] DENG Mingjiang, LIU Bin. Challenges, countermeasures and development direction of geological forward-prospecting for TBM cluster tunneling in super-long tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 8 -19 .
[3] DING Xiuli, ZHANG Yuting, ZHANG Chuanjian, YAN Tianyou, HUANG Shuling. Review on countermeasures and their adaptability evaluation to tunnels crossing active faults[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 20 -35 .
[4] JIAO Yuyong, ZHANG Weishe, OU Guangzhao, ZOU Junpeng, CHEN Guanghui. Review of the evolution and mitigation of the water-inrush disaster in drilling-and-blasting excavated deep-buried tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 36 -46 .
[5] ZHANG Qingsong, ZHANG Lianzhen, LI Peng, FENG Xiao. New progress in grouting reinforcement theory of water-rich soft stratum in underground engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 47 -57 .
[6] XIA Kaiwen, XU Ying, CHEN Rong. Dynamic tests of rocks subjected to simulated deep underground environments[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 58 -75 .
[7] HONG Kairong. Study on rock breaking and wear of TBM hob in high-strength high-abrasion stratum[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 76 -85 .
[8] TAN Zhongsheng. Application experimental study of high-strength lattice girders with heat treatment in tunnel engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 86 -92 .
[9] CHEN Jianxun, LUO Yanbin. The stability of structure and its control technology for lager-span loess tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 93 -101 .
[10] JING Hongwen, YU Liyuan, SU Haijian, GU Jincai, YIN Qian. Development and application of catastrophic experiment system for water inrush in surrounding rock of deep tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 102 -110 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn