Please wait a minute...
 
隧道与地下工程灾害防治  2023, Vol. 5 Issue (4): 47-56    DOI: 10.19952/j.cnki.2096-5052.2023.04.05
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
高压水射流切割混凝土试验与数值模拟
张宁1,黄新杰2,3,王川1,徐彬2,3,张建成2,4,张波2,4*
1.山东高速集团有限公司, 山东 济南 250101; 2.山东大学岩土与结构工程研究中心, 山东 济南 250061; 3.山东大学齐鲁交通学院, 山东 济南 250061; 4.山东大学土建与水利学院, 山东 济南 250061
Experimental and numerical simulation of high-pressure water jet cutting concrete
ZHANG Ning1, HUANG Xinjie2,3, WANG Chuan1, XU Bin2,3, ZHANG Jiancheng2,4, ZHANG Bo2,4*
1. Shandong High Speed Group Co., Ltd., Jinan 250101, Shandong, China;
2. Geotechnical and Structural Engineering Research Center, Shandong University, Jinan 250061, Shandong, China;
3. School of Qilu Transportation, Shandong University, Jinan 250061, Shandong, China;
4. School of Civil Engineering, Shandong University, Jinan 250061, Shandong, China
下载:  PDF (17435KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对地下空间工程建设中既有混凝土建(构)筑物破拆问题,通过室内试验和数值模拟,系统研究不同水射流参数和切割工艺参数对高压水射流破坏混凝土性能的影响规律,分析混凝土在水射流冲击作用下应力分布和裂纹扩展特征。试验结果表明:高压水射流切割混凝土深度随泵压的增大线性增加,随靶距的增大先增大后减小,随切割次数的增加增长率不断减小,随横移速度的减小增长率逐渐变大;高压水射流冲击中心点附近的有效应力超过混凝土的强度,导致混凝土破坏,裂纹沿有效应力峰值点扩展,并不断贯通形成片状剥落;对于水射流切割强约束混凝土,主要以水射流切割缝和表面混凝土片状剥落破坏为主,对于弱约束混凝土,则以成段切除破坏为主;混凝土内部存在自由面时,更易形成贯通裂缝,产生大体积破除。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张宁
黄新杰
王川
徐彬
张建成
张波
关键词:  高压水射流  混凝土  切割性能  数值模拟    
Abstract: Aiming at the problem of demolition of existing concrete buildings in underground space construction, the effects of different water jet parameters and cutting process parameters on the performance of high-pressure water jet damaged concrete were systematically investigated through indoor experiments and numerical simulations, and the stress distribution and crack extension characteristics of concrete under the impact of water jet were analyzed. The test results showed that the depth of high-pressure water jet cutting concrete increased linearly with the increase of pump pressure, increased first and then decreased with the increase of target distance, decreased with the increase of the number of cutting growth rate, with the decrease of traverse speed growth rate gradually became larger. The effective stress near the center point of the high-pressure water jet impact exceeded the strength of the concrete, leading to the failure of the concrete. Cracks propagate along the peak point of the effective stress and continuously penetrated to form flaky spalling. In addition, for water jet cutting of strongly restrained concrete, the main damage was dominated by water jet cutting joints and surface concrete flake spalling, while for weakly restrained concrete, the damage was dominated by segmental excision. When there was a free surface inside the concrete, it was more likely to form through cracks and produce a large-volume breakage.
Key words:  high-pressure water jet    concrete    cutting performance    numerical simulation
收稿日期:  2023-08-14      修回日期:  2023-09-26      发布日期:  2023-12-19     
中图分类号:  TU94+1  
  TU746.3  
基金资助: 国家自然科学基金面上资助项目(42272311);交通运输重点科技资助项目(2021-MS2-064);山东省交通运输厅科技计划资助项目(1410121062)
通讯作者:  张波(1977— ),男,山东淄博人,教授,博士生导师,博士,主要研究方向为高压射流、激光等高效破岩方式机理及装备等。    E-mail:  zhangbo1977@sdu.edu.cn
作者简介:  张宁(1983— ),女,山东淄博人,高级工程师,硕士,主要研究方向为高压水射流破拆混凝土结构等. E-mail: 251385683@qq.com
引用本文:    
张宁, 黄新杰, 王川, 徐彬, 张建成, 张波. 高压水射流切割混凝土试验与数值模拟[J]. 隧道与地下工程灾害防治, 2023, 5(4): 47-56.
ZHANG Ning, HUANG Xinjie, WANG Chuan, XU Bin, ZHANG Jiancheng, ZHANG Bo. Experimental and numerical simulation of high-pressure water jet cutting concrete. Hazard Control in Tunnelling and Underground Engineering, 2023, 5(4): 47-56.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2023/V5/I4/47
[1] 阮佳琪, 乔金锋, 娄安东, 等. 超高压水射流破拆混凝土工艺参数研究[J]. 矿山机械, 2019, 47(7):11-17. RUAN Jiaqi, QIAO Jinfeng, LOU Andong, et al. Research on technical parameters of super-pressure water jet concrete hydrodemolition[J]. Mining & Processing Equipment, 2019, 47(7):11-17.
[2] 祁宇明, 邓三鹏, 王仲民, 等. 坍塌现场高压水射流破拆机器人系统研究[J]. 机械设计与制造, 2013(6):209-211. QI Yuming, DENG Sanpeng, WANG Zhongmin, et al. Research on high-pressure water jet rescue robot for collapse site[J]. Machinery Design & Manufacture, 2013(6):209-211.
[3] 孙灏. 水力致裂不同强度混凝土影响分析[J]. 科学技术创新, 2020(25):131-132.
[4] 刘涛, 杨克形, 姜磊, 等. 极限近距侧穿桩基盾构隧道开挖过程扰动效应[J]. 隧道与地下工程灾害防治, 2020, 2(1):61-67. LIU Tao, YANG Kexing, JIANG Lei, et al. Disturbing effect of excavation process of shield tunnel with extremely closed side piles[J]. Hazard Control in Tunnelling and Underground Engineering, 2020, 2(1):61-67.
[5] 庄欠伟, 袁一翔, 徐天明, 等. 射流联合盾构切削钢筋混凝土仿真与试验[J]. 岩土工程学报, 2020, 42(10):1817-1824. ZHUANG Qianwei, YUAN Yixiang, XU Tianming, et al. Simulation and experiment on cutting reinforced concrete with jet combined shield method[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10):1817-1824.
[6] RYHMING I L. Analysis of unsteady incompressible jet nozzle flow[J]. Zeitschrift Für Angewandte Mathematik Und Physik, 1973, 24(2):149-164.
[7] WANG Fangxiang, WANG Ruihe, ZHOU Weidong, et al. Numerical simulation and experimental verification of the rock damage field under particle water jet impacting[J]. International Journal of Impact Engineering, 2017, 102:169-179.
[8] 李学文, 邓凯萱. 高压水射流破除混凝土研究现状及展望[J]. 广东建材, 2022, 38(10):16-20.
[9] LI Biao, ZHANG Bo, HU Mengmeng, et al. Full-scale linear cutting tests to study the influence of pre-groove depth on rock-cutting performance by TBM disc cutter[J]. Tunnelling and Underground Space Technology, 2022, 122:104366.
[10] LI Biao, HU Mengmeng, ZHANG Bo, et al. Numerical simulation and experimental studies of rock-breaking methods for pre-grooving-assisted disc cutter[J]. Bulletin of Engineering Geology and the Environment, 2022, 81:90.
[11] 李泉, 焦卫宁. 隧道衬砌混凝土施工缝冲毛效果参数研究[J]. 建筑机械, 2022(2):55-58. LI Quan, JIAO Weining. Study on roughening effect parameters of tunnel lining concrete construction joint[J]. Construction Machinery, 2022(2):55-58.
[12] CHEN Hailong, LI Zhaomin, GAO Zhihan, et al. Numerical investigation of rock breaking mechanisms by high pressure water jet[J]. Procedia Engineering, 2015, 126:295-299.
[13] GOLETTI M, GRASSO M, ANNONI M, et al. Condition monitoring of an ultra high pressure intensifier for water jet cutting machines [J]. Procedia CIRP, 2013, 12:193-198.
[14] HASHISH M, DU PLESSIS M P. Prediction equations relating high velocity jet cutting performance to stand off distance and multipasses[J]. Journal of Engineering for Industry, 1979, 101(3):311-318.
[15] 杜晓琳, 杨林. 混凝土路面水铣技术及应用[J]. 北方交通, 2011(10):2-14. DU Xiaolin, YANG Lin. Water jet milling technology of concrete pavement and application[J]. Northern Communications, 2011(10):2-14.
[16] 冯玮, 王晓刚. 高压水射流破碎技术在水泥混凝土路面维修中的应用初探[J]. 公路交通科技(应用技术版), 2013, 9(1):20-21.
[17] 王龙飞, 徐兴槐. 高压水射流破除混凝土技术的应用分析[J]. 建材技术与应用, 2020(1):15-17. WANG Longfei, XU Xinghuai. Application analysis of high pressure water jet to break concrete[J]. Research & Application of Building Materials, 2020(1):15-17.
[18] SILFWERBRAND J, 庄新玲, 隋莉莉. 组合混凝土梁承受不均匀收缩时应力与应变[J]. 吉林建筑工程学院学报, 1998(4):1-8.
[19] MOMBER A W. An SEM-study of high-speed hydrodynamic erosion of cementitious composites[J]. Composites Part B: Engineering, 2003, 34(2):135-142.
[20] MOMBER A W, KOVACEVIC R, YE J. The fracture of concrete due to erosive wear by high velocity water flow[J]. Tribology Transactions, 1995, 38(3):686-692.
[21] SITEK L,BODNÁROVÁ L,VÁLEK J, et al. Effects of water jet on heat-affected concretes[J]. Procedia Engineering, 2013(57):1036-1044.
[22] 张建国, 焦卫宁, 马俊斌, 等. 早期混凝土高压水射流冲毛角度试验研究[J]. 建筑机械, 2020(3):64-66. ZHANG Jianguo, JIAO Weining, MA Junbin, et al. Experimental study on angle of high pressure water jet for early concrete[J]. Construction Machinery, 2020(3):64-66.
[23] JIANG Hongxiang, DU Changlong, LIU Songyong, et al. Numerical simulation of rock fragmentation under the impact load of water jet[J]. Shock and Vibration, 2014, 2014:1-11.
[24] 徐芝纶. 弹性力学:下册[M]. 3版. 北京:高等教育出版社, 1992.
[1] 王伟, 刘英, 庄海洋, 赵凯, 陈国兴. 考虑内部结构的大直径盾构隧道抗震性能[J]. 隧道与地下工程灾害防治, 2023, 5(3): 78-85.
[2] 孙港, 王军祥, 孟祥竹, 郭连军, 孙杰. 基于近场动力学理论的岩石双孔爆破动态断裂行为数值模拟[J]. 隧道与地下工程灾害防治, 2023, 5(2): 42-58.
[3] 赵兴东, 窦翔, 李勇, 王立君. 基于Ventsim的地下水封洞库建造期通风方式优选[J]. 隧道与地下工程灾害防治, 2023, 5(1): 8-17.
[4] 黄兴, 张炜, 殷建钢, 施皓, 张晓磊. 填埋场扩建后下穿隧道结构的安全性[J]. 隧道与地下工程灾害防治, 2023, 5(1): 55-63.
[5] 党晓宇, 马劲松. 基于桩板组合结构等代仰拱的公路隧道加固方案[J]. 隧道与地下工程灾害防治, 2023, 5(1): 90-96.
[6] 关振长, 周宇轩, 吕春波, 吕荔炫. 空气间隔装药周边眼爆破精细化数值模拟[J]. 隧道与地下工程灾害防治, 2022, 4(4): 11-19.
[7] 黄昕, 谷冠思, 张子新, 李昀. 考虑渗流的泥水平衡盾构隧道稳定性数值模拟[J]. 隧道与地下工程灾害防治, 2022, 4(2): 28-38.
[8] 李相兵, 梁波, 鲁思源. 考虑多因素影响的双侧壁导坑法施工参数研究[J]. 隧道与地下工程灾害防治, 2022, 4(2): 39-48.
[9] 石宗涛. 济南黄河隧道泥水盾构开挖面稳定性分析[J]. 隧道与地下工程灾害防治, 2022, 4(1): 71-77.
[10] 李钊, 梁庆国, 孙文, 曹小平. 隧道台阶法施工上台阶长度对隧道变形的影响[J]. 隧道与地下工程灾害防治, 2022, 4(1): 55-62.
[11] 曹成威, 石钰锋, 徐长节, 侯世磊, 龚宏华, 纪松岩. 某明挖深基坑地下连续墙非对称配筋优化设计[J]. 隧道与地下工程灾害防治, 2022, 4(1): 63-70.
[12] 谢浩, 孙晓彤, 黄永亮, 王晓晖, 胡爽. 基于OpenMP和激光扫描的三维细观混凝土建模技术[J]. 隧道与地下工程灾害防治, 2022, 4(1): 95-102.
[13] 房倩, 杜建明, 王赶, 杨晓旭. 模型边界对圆形隧道开挖引起地表沉降的影响分析[J]. 隧道与地下工程灾害防治, 2022, 4(1): 10-17.
[14] 夏英杰, 孟庆坤, 唐春安, 张永彬, 赵丹晨, 赵振兴. 岩石破裂过程分析方法在隧道工程模拟中的应用[J]. 隧道与地下工程灾害防治, 2021, 3(3): 36-49.
[15] 黄笑, 肖培伟, 董林鹭, 杨兴国, 徐奴文. 高地应力地下洞室群开挖过程岩体力学响应及破坏机制[J]. 隧道与地下工程灾害防治, 2021, 3(3): 85-93.
[1] QIAN Qihu. Scientific use of the urban underground space to construction the harmonious livable and beautiful city[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 1 -7 .
[2] DENG Mingjiang, LIU Bin. Challenges, countermeasures and development direction of geological forward-prospecting for TBM cluster tunneling in super-long tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 8 -19 .
[3] DING Xiuli, ZHANG Yuting, ZHANG Chuanjian, YAN Tianyou, HUANG Shuling. Review on countermeasures and their adaptability evaluation to tunnels crossing active faults[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 20 -35 .
[4] JIAO Yuyong, ZHANG Weishe, OU Guangzhao, ZOU Junpeng, CHEN Guanghui. Review of the evolution and mitigation of the water-inrush disaster in drilling-and-blasting excavated deep-buried tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 36 -46 .
[5] ZHANG Qingsong, ZHANG Lianzhen, LI Peng, FENG Xiao. New progress in grouting reinforcement theory of water-rich soft stratum in underground engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 47 -57 .
[6] XIA Kaiwen, XU Ying, CHEN Rong. Dynamic tests of rocks subjected to simulated deep underground environments[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 58 -75 .
[7] HONG Kairong. Study on rock breaking and wear of TBM hob in high-strength high-abrasion stratum[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 76 -85 .
[8] TAN Zhongsheng. Application experimental study of high-strength lattice girders with heat treatment in tunnel engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 86 -92 .
[9] CHEN Jianxun, LUO Yanbin. The stability of structure and its control technology for lager-span loess tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 93 -101 .
[10] JING Hongwen, YU Liyuan, SU Haijian, GU Jincai, YIN Qian. Development and application of catastrophic experiment system for water inrush in surrounding rock of deep tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 102 -110 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn