Please wait a minute...
 
隧道与地下工程灾害防治  2021, Vol. 3 Issue (4): 9-19    DOI: 10.19952/j.cnki.2096-5052.2021.04.02
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
不同侧压系数和岩石强度下TBM滚刀破岩效率的数值模拟
温森1,2,吴斐1,李胜1,张洛萌1
1.河南大学岩土与轨道交通工程研究所, 河南 开封 475004;2.河南省轨道交通智能建造工程研究中心, 河南 开封 475004
Numerical simulation of rock fragmentation efficiency of TBM disc cutter under different lateral pressure coefficient and rock strength
WEN Sen1,2, WU Fei1, LI Sheng1, ZHANG Luomeng1
1. Institute of Geotechnical and Rail Transit Engineering, Henan University, Kaifeng 475004, Henan, China;
2. Henan Provincial Research Center of Engineering on Intelligent Construction of Rail Transit, Kaifeng 475004, Henan, China
下载:  PDF (10659KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用PFC3D对选取的5种不同强度的岩石在不同的侧压系数、刀间距和贯入度下分别进行三滚刀破岩数值计算。数值模拟中记录破岩过程的裂纹扩展图和监测不同工况下滚刀破岩过程中的法向力、滚动力和试样破坏的颗粒数量。通过对不同工况下裂纹扩展分析和滚刀破岩比能计算得到如下结论:裂纹扩展图显示,滚刀破岩的过程中存在最优s/p(s、p分别为刀间距贯入度);随着侧压系数的增大,滚刀破岩效率降低;在侧压系数为0.81.01.21.6时,5种不同强度岩石均在s/p=10时滚刀破岩效率高,侧压系数为1.4时,均在在s/p=12.5时破岩效率高
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
温森
吴斐
李胜
张洛萌
关键词:  TBM  滚刀破岩  比能  PFC3D  s/p    
Abstract: PFC3Dwas used to simulate the rock fragmentation of five kinds of rocks with different strength under different lateral pressure coefficient, cutter spacing and penetration. In the numerical simulation, the crack propagation diagram of the rock fragmentation process was recorded and the normal force, rolling force and the number of particles damaged in the rock fragmentation process of the disc cutter under different working conditions were monitored. Through the crack propagation analysis and the calculation of the rock fragmentation specific energy of the disc cutter under different working conditions, the following conclusions were obtained: the crack propagation diagram showed that there was an optimal s/p in the rock fragmentation process of the disc cutter(s and p were the cutter spacing and penetration, respectively); With the increase of lateral pressure coefficient, the efficiency of rock fragmentation decreased; When the lateral pressure coefficient was 0.8, 1.0, 1.2 and 1.6, the rock fragmentation efficiency of disc cutter was high when s/p=10; When the lateral pressure coefficient was 1.4, the rock fragmentation efficiency was high at s/p=12.5.
Key words:  tunnel boring machine    rock fragmentation by disc cutter    specific energy    PFC3D    s/p
收稿日期:  2021-07-29      修回日期:  2021-08-31      发布日期:  2021-12-20     
中图分类号:  TU452  
基金资助: 国家自然科学基金资助项目(51608174);河南省科技计划项目(212102310274);河南省科技计划项目(202102310575
作者简介:  温森(1981— ),男,河南息县人,博士,教授,硕士生导师,主要研究方向为地下工程. E-mail:10160063@vip.henu.edu.cn
引用本文:    
温森, 吴斐, 李胜, 张洛萌. 不同侧压系数和岩石强度下TBM滚刀破岩效率的数值模拟[J]. 隧道与地下工程灾害防治, 2021, 3(4): 9-19.
WEN Sen, WU Fei, LI Sheng, ZHANG Luomeng. Numerical simulation of rock fragmentation efficiency of TBM disc cutter under different lateral pressure coefficient and rock strength. Hazard Control in Tunnelling and Underground Engineering, 2021, 3(4): 9-19.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2021/V3/I4/9
[1] COOK N G W, HOOD M, TSAI F. Observations of crack growth in hard rock loaded by an indenter[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1984, 21(2): 97-107.
[2] KOU S Q, LINDQVIST P A, TANG C A, et al. Numerical simulation of the cutting of inhomogeneous rocks[J]. International Journal of Rock Mechanics and Mining Sciences, 1999, 36(5): 711-717.
[3] CARPINTERI A, CHIAIA B, INVERNIZZI S. Numerical analysis of indentation fracture in quasi-brittle materials[J]. Engineering Fracture Mechanics, 2004, 71(4/5/6): 567-577.
[4] LIU J Q, BIN H C, GUO W, et al. New method for studying rock-breaking mechanism by disc cutters[J]. Transactions of Tianjin University, 2017, 23(2): 147-156.
[5] 杨金强. 盘形滚刀受力分析及切割岩石数值模拟研究[D]. 北京:华北电力大学, 2007. YANG Jinqiang. The force analysis and numerical simulation study on disk culter cutting rock[D]. Beijing: North China Electric Power University, 2007.
[6] 满林涛. 盘形滚刀破岩过程有限元数值模拟[D]. 大连: 大连理工大学, 2012. MAN Lintao. Numerical simulation of rock breaking process by disc cutter using finite element method[D]. Dalian: Dalian University of Technology, 2012.
[7] GONG Q M, ZHAO J, JIAO Y Y. Numerical modeling of the effects of joint orientation on rock fragmentation by TBM cutters[J]. Tunnelling and Underground Space Technology, 2005, 20(2): 183-191.
[8] GONG Q M, JIAO Y Y, ZHAO J. Numerical modelling of the effects of joint spacing on rock fragmentation by TBM cutters[J]. Tunnelling and Underground Space Technology, 2006, 21(1): 46-55.
[9] 孙金山, 陈明, 陈保国, 等. TBM滚刀破岩过程影响因素数值模拟研究[J]. 岩土力学, 2011,32(6): 1891-1897. SUN Jinshan, CHEN Ming, CHEN Baoguo, et al. Numerical simulaiton of influence factors for rock fragmentation by TBM cutter[J]. Rock and Soil Mechanics, 2011, 32(6): 1891-1897.
[10] HARTHONG B, SCHOLTÈS L, DONZÉ F V. Strength characterization of rock masses, using a coupled DEM-DFN model[J]. Geophysical Journal International, 2012, 191(2): 467-480.
[11] 莫振泽,李海波,周青春,等. 基于UDEC的隧道掘进机滚刀破岩数值模拟研究[J]. 岩土力学, 2012,33(4): 1196-1202. MO Zhenze, LI Haibo, ZHOU Qingchun, et al. Research on numerical simulation of rock breaking using TBM disc cutters based on UDEC method[J]. Rock and Soil Mechanics, 2012, 33(4): 1196-1202.
[12] 唐谦,李云安.围压对岩石裂纹扩展影响的颗粒流模拟研究[J].长江科学院院报,2015,32(4):81-85. TANG Qian, LI Yunan. Particle flow simulation on the influence of confinement on crack propagation in pre-cracked rock[J].Journal of Yangtze River Scientific Research Institute, 2015, 32(4):81-85.
[13] 孙建中, 杨圣奇, 温森. 深部节理岩体TBM滚刀破岩效果及最优刀间距研究[J]. 采矿与安全工程学报, 2015,32(1): 126-131. SUN Jianzhong, YANG Shengqi, WEN Sen. Research on deep jointed rock fragmentation by TBM cutters and cutters spacing optimization[J]. Journal of Mining & Safety Engineering, 2015, 32(1): 126-131.
[14] GUO L, SUN W, HUO J Z, et al. Numerical simulation of rock fragmentation process by disc cutter[C] //2009 International Symposium on Risk Control and Management of Design. Dalian, China:[s.n.] , 2009.
[15] 孙伟,郭莉,周建军,等.TBM双滚刀破岩过程模拟及刀圈结构设计[J].煤炭学报,2015,40(6):1297-1302. SUN Wei, GUO Li, ZHOU Jianjun, et al. Rock fragmentation simulation under dual TBM disc cutter and design of cutter ring[J]. Journal of China Coal Society, 2015, 40(6):1297-1302.
[16] 温森,高萌萌.围压作用下复合岩层滚刀破岩效率数值模拟[J].中国科技论文,2018,13(19):2195-2202. WEN Sen, GAO Mengmeng. Numerical study of confining pressure influencing on efficiency of rock fragmentation by disc cutter in mixed rock strata[J].China Sciencepaper, 2018, 13(19):2195-2202.
[17] 贺飞,田彦朝,尚勇,等.全尺度TBM滚刀线性切削花岗岩试验研究[J].隧道建设(中英文),2018,38(12):2063-2070. HE Fei, TIAN Yanchao, SHANG Yong, et al. Experimental research on full-scale linear cutting of granite by TBM disc cutters[J]. Tunnel Construction, 2018, 38(12):2063-2070.
[18] 闫长斌,杜旭阳,戴晓亚,等.基于围岩力学参数的TBM净掘进速率多元回归预测模型[J].隧道建设(中英文),2019,39(1):48-53. YAN Changbin, DU Xuyang, DAI Xiaoya, et al. Multiple regression prediction model for TBM net boring rate based on mechanical parameters of surrounding rock[J]. Tunnel Construction, 2019, 39(1):48-53.
[19] MOON T, OH J. A study of optimal rock-cutting conditions for hard rock TBM using the discrete element method[J]. Rock Mechanics and Rock Engineering, 2012, 45(5): 837-849.
[20] ZHANG X H, XIA Y M, ZENG G Y, et al. Numerical and experimental investigation of rock breaking method under free surface by TBM disc cutter[J]. Journal of Central South University, 2018, 25(9): 2107-2118.
[21] 龚秋明,董贵良,殷丽君,等. 线性和旋转切割方式滚刀破岩试验对比研究[J].施工技术,2017,46(11):61-66. GONG Qiuming, DONG Guiliang, YIN Lijun, et al. Comparison study on the rock linear and rotating cutting test by TBM cutter[J]. Construction Technology, 2017, 46(11):61-66.
[1] 杨继华, 闫长斌, 齐三红, 郭卫新, 杨风威. 不良地质段双护盾TBM施工综合处理技术[J]. 隧道与地下工程灾害防治, 2023, 5(2): 59-70.
[2] 龚秋明, 谢兴飞, 黄流, 兴海, 吴根生. 引绰济辽工程二标隧洞段TBM滚刀磨损规律[J]. 隧道与地下工程灾害防治, 2022, 4(4): 1-10.
[3] 王明耀, 鲁义强, 贺飞, 李潮. 软岩大变形分类分级方法及TBM适应性[J]. 隧道与地下工程灾害防治, 2022, 4(4): 79-90.
[4] 钟长平, 竺维彬, 王俊彬, 谢文达. 双模盾构机/TBM的原理与应用[J]. 隧道与地下工程灾害防治, 2022, 4(3): 47-66.
[5] 赵毅. TBM强岩爆掘进段小导洞超前应力释放施工技术[J]. 隧道与地下工程灾害防治, 2022, 4(1): 78-85.
[6] 唐旭海, 邵祖亮, 许婧璟, 张怡恒. 高温-液氮循环处理下花岗岩损伤劣化机制[J]. 隧道与地下工程灾害防治, 2022, 4(1): 18-28.
[7] 张姣龙,高一民,张建,周浩,潘野,柯磊, 柳献. 一种模拟盾构刀盘破岩过程的模型试验设计原理和方法[J]. 隧道与地下工程灾害防治, 2021, 3(4): 20-28.
[8] 王玉杰,沈强,曹瑞琅,龚秋明,刘立鹏. 大变形围岩TBM施工适应性分类标准研究[J]. 隧道与地下工程灾害防治, 2020, 2(4): 37-43.
[9] 徐琛,刘晓丽,张鲁军,毛宗原,周建军,王思敬. 耦合地质模型的TBM隧道施工过程进度仿真预测[J]. 隧道与地下工程灾害防治, 2020, 2(2): 41-46.
[10] 李树忱,万泽恩,商金华,赵世森,杨晓东,李阳. 盾构/TBM渣土改良与盾尾密封技术研究进展[J]. 隧道与地下工程灾害防治, 2019, 1(4): 33-48.
[11] 梁立唯, 刘春, 秦岩, 朱晨光, 邓尚. 基于MatDEM的盾构滚刀破岩离散元建模与数值模拟[J]. 隧道与地下工程灾害防治, 2019, 1(3): 116-122.
[12] 谭忠盛. 隧道与地下工程建设理念及关键技术——记王梦恕院士的主要学术思想和科研成就[J]. 隧道与地下工程灾害防治, 2019, 1(2): 1-6.
[13] 邓铭江, 刘斌. 超特长隧洞TBM集群施工超前地质预报的挑战、对策与发展方向[J]. 隧道与地下工程灾害防治, 2019, 1(1): 8-19.
[14] 洪开荣. 高强度高磨蚀地层TBM滚刀破岩与磨损研究[J]. 隧道与地下工程灾害防治, 2019, 1(1): 76-85.
[1] QIAN Qihu. Scientific use of the urban underground space to construction the harmonious livable and beautiful city[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 1 -7 .
[2] DENG Mingjiang, LIU Bin. Challenges, countermeasures and development direction of geological forward-prospecting for TBM cluster tunneling in super-long tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 8 -19 .
[3] DING Xiuli, ZHANG Yuting, ZHANG Chuanjian, YAN Tianyou, HUANG Shuling. Review on countermeasures and their adaptability evaluation to tunnels crossing active faults[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 20 -35 .
[4] JIAO Yuyong, ZHANG Weishe, OU Guangzhao, ZOU Junpeng, CHEN Guanghui. Review of the evolution and mitigation of the water-inrush disaster in drilling-and-blasting excavated deep-buried tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 36 -46 .
[5] ZHANG Qingsong, ZHANG Lianzhen, LI Peng, FENG Xiao. New progress in grouting reinforcement theory of water-rich soft stratum in underground engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 47 -57 .
[6] XIA Kaiwen, XU Ying, CHEN Rong. Dynamic tests of rocks subjected to simulated deep underground environments[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 58 -75 .
[7] HONG Kairong. Study on rock breaking and wear of TBM hob in high-strength high-abrasion stratum[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 76 -85 .
[8] TAN Zhongsheng. Application experimental study of high-strength lattice girders with heat treatment in tunnel engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 86 -92 .
[9] CHEN Jianxun, LUO Yanbin. The stability of structure and its control technology for lager-span loess tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 93 -101 .
[10] JING Hongwen, YU Liyuan, SU Haijian, GU Jincai, YIN Qian. Development and application of catastrophic experiment system for water inrush in surrounding rock of deep tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 102 -110 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn