Please wait a minute...
 
隧道与地下工程灾害防治  2024, Vol. 6 Issue (1): 45-53    DOI: 10.19952/j.cnki.2096-5052.2024.01.05
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
水封洞库施工过程稳定性评价及断层影响分析
付长波1,洪成华2,王者超2,王鹏宇2,李崴2
1.中海油石化工程有限公司, 山东 青岛 266101;2.东北大学深部工程与智能技术研究院, 辽宁 沈阳 110819
Stability evaluation and faults influence analysis of water-sealed caverns during construction
FU Changbo1, HONG Chenghua2, WANG Zhechao2, WANG Pengyu2, LI Wei2
1. CNOOC Petrochemical Engineering Co., Ltd., Qingdao 266101, Shandong, China;
2. Institute of Deep Engineering and Intelligent Technology, Northeastern University, Shenyang 110819, Liaoning, China
下载:  PDF (7858KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为研究多个断层与地下洞群相交情况下的围岩稳定性,基于Hoek-Brown修正后的岩体物理力学参数,采用FLAC3D软件中的莫尔-库仑模型作为本构模型,对某地下水封洞库项目的围岩稳定性进行研究。研究结果表明:随着开挖阶段的推进,主洞室侧墙位移逐渐增大;在全断面开挖后,主洞室侧墙位移普遍大于拱顶和底板位移,大部分洞室的侧墙以及部分洞室的底板和拱顶出现应力集中现象和塑性区;当断层靠近主洞室但未与其相交时,洞室和断层之间形成不稳定岩体区域,该区域的岩体会向洞室内部滑动,并会产生较大的位移;当断层与主洞室相交时,不稳定岩体区域消失,此时位移形式与无断层时类似,断层会引发围岩应力的释放,并会使附近围岩出现较为严重的塑性变形。在地下水封洞库施工过程中,需要重点监测直接穿越断层位置及其前后位置。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
付长波
洪成华
王者超
王鹏宇
李崴
关键词:  地下水封洞库  围岩稳定性  断层  洞室群  FLAC3D    
Abstract: The stability of surrounding rock within an underground water-sealed cavern project was investigated to examine the stability of surrounding rock under the intersection of multiple faults and underground caverns. The Hoek-Brown modified rock mass physical-mechanical parameters were utilized, and the Mohr-Coulomb model in the FLAC3D software was employed as a constitutive model. The results showed that the sidewall displacement of the main chamber gradually increased with the progress of the excavation stage. After the entire section was completely excavated, the lateral displacement of the primary cavern's sidewall generally surpassed that of both its vault and bottom plate. Stress concentration and plastic deformation were observed in the sidewalls of most caverns, as well as in the top sections of select caverns. In caverns adjacent to, but not intersecting with faults, unstable rock mass areas were formed between the cavern and the fault, where the rock mass tended to slide into the cavern, resulting in significant displacement. In caverns directly intersecting with faults, the unstable rock mass areas disappeared and a similar displacement pattern was observed as that without faults. Stress release in the surrounding rock was induced by the fault and significant plastic deformation of adjacent rock near the cavern was resulted. In the construction process of an underground water-sealed cavern, the position of the direct fault crossing needs to be monitored, and attention should be paid to its anterior and posterior positions.
Key words:  underground water-sealed caverns    surrounding rock stability    fault    cavern group    FLAC3DReceived:2023-12-29    Revised:2024-01-30    Accepted:2024-02-23    Published:2024-03-20
发布日期:  2024-04-10     
中图分类号:  TE822  
基金资助: 国家自然科学基金面上资助项目(42177157);辽宁省应用基础研究计划资助项目(2023JH2/101300153)
作者简介:  付长波(1982—),男,山东成武人,高级工程师,硕士,主要研究方向为地下结构工程. E-mail: fuchangbo177@126.com
引用本文:    
付长波,洪成华,王者超,王鹏宇,李崴. 水封洞库施工过程稳定性评价及断层影响分析[J]. 隧道与地下工程灾害防治, 2024, 6(1): 45-53.
FU Changbo, HONG Chenghua, WANG Zhechao, WANG Pengyu, LI Wei. Stability evaluation and faults influence analysis of water-sealed caverns during construction. Hazard Control in Tunnelling and Underground Engineering, 2024, 6(1): 45-53.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2024/V6/I1/45
[1] 王者超, 张彬, 乔丽苹, 等. 中国地下水封储存理论与关键技术研究进展[J]. 油气储运, 2022, 41(9): 995-1003. WANG Zhechao, ZHANG Bin, QIAO Liping, et al. Research progress on theories and key technologies of underground water-sealed storage in China[J]. Oil & Gas Storage and Transportation, 2022, 41(9): 995-1003.
[2] LI Yutao, ZHANG Bin, WANG Lei, et al. Key issues in water sealing performance of underground oil storage caverns: advances and perspectives[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2023, 15(10): 2787-2802.
[3] 乔丽苹, 卢卫莉, 闵忠顺, 等. 地下水封洞库围岩块体稳定性与支护可靠性分析[J]. 东北大学学报(自然科学版), 2023, 44(4): 544-550. QIAO Liping, LU Weili, MIN Zhongshun, et al. Reliability analysis of rock block stability and support for underground water-sealed storage caverns[J]. Journal of Northeastern University(Natural Science), 2023, 44(4): 544-550.
[4] 王茜, 凌同华, 刘唐利, 等. 穿越断层破碎带隧道入口段施工数值模拟[J]. 交通科学与工程, 2019, 35(4): 78-84. WANG Qian, LING Tonghua, LIU Tangli, et al. Numerical simulation of construction method of tunnel entrance section throughing fractured fault zone[J]. Journal of Transport Science and Engineering, 2019, 35(4): 78-84.
[5] XUE Y G, ZHOU B, WU Z, et al. Mechanical properties of support forms for fault fracture zone in subsea tunnel[J]. Soil Mechanics and Foundation Engineering, 2020, 56(6): 436-444.
[6] SAINOKI A, MAINA D, SCHWARTZKOPFF A K, et al. Impact of the intermediate stress component in a plastic potential function on rock mass stability around a sequentially excavated large underground cavity[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 127: 104223.
[7] 孙驰, 宋琨, 穆景超, 等. 基于岩体结构面特征的地下水封洞库轴向优化[J]. 人民长江, 2021, 52(1): 90-95. SUN Chi, SONG Kun, MU Jingchao, et al. Optimization of axial direction of underground water-sealed caverns based on rock mass structural plane characteristics[J]. Yangtze River, 2021, 52(1): 90-95.
[8] 刘明宾. 断层破碎带影响下地下水封石洞油库围岩稳定性分析[D]. 大庆: 东北石油大学, 2021. LIU Mingbin. Stability analysis of surrounding rock of underground water-sealed rock cavern oil depot under the influence of fault fracture zone[D].Daqing: Northeast Petroleum University, 2021.
[9] 刘英,庄海洋,张季,等.近直下型断层的地铁车站结构地震响应[J/OL].岩土工程学报.(2023-10-20)[2024-03-05]. https://link.cnki.net/urlid/32.1124.TU.20231020.1024.008. LIU Ying, ZHUANG Haiyang, ZHANG Ji, et al. Seismic response of subway station structure under the straight-down near-fault[J/OL]. Chinese Journal of Geotechnical Engineering.(2023-10-20)[2024-03-05]. https://link.cnki.net/urlid/32.1124.TU.20231020.1024.008.
[10] 中华人民共和国住房和城乡建设部. 工程岩体分级标准: GB/T 50218—2014[S]. 北京: 中国计划出版社, 2015.
[11] YU Maohong, ZAN Yuewen, ZHAO Jian, et al. A unified strength criterion for rock material[J]. International Journal of Rock Mechanics and Mining Sciences, 2002, 39(8): 975-989.
[12] LIU Jie, ZHAO Xingdong, ZHANG Shujing, et al. Analysis of support requirements for underground water-sealed oil storage cavern in China[J]. Tunnelling and Underground Space Technology, 2018, 71: 36-46.
[13] 张广权, 曾大乾, 范照伟, 等. 利用地应力评价地下储气库断层密封性方法及应用[J]. 天然气地球科学, 2021, 32(6): 923-930. ZHANG Guangquan, ZENG Daqian, FAN Zhaowei, et al. Method and application of in situ stress field to evaluate fault sealing of underground gas storage traps[J]. Natural Gas Geoscience, 2021, 32(6): 923-930.
[14] 李敏, 李依伦, 陈伟民. 平面问题转轴公式适用性的讨论[J]. 力学与实践, 2022, 44(3): 646-650. LI Min, LI Yilun, CHEN Weimin. Discussion on the applicability of transformation equations for plane problem[J]. Mechanics in Engineering, 2022, 44(3): 646-650.
[15] 刘鹏, 赵青, 陈轶磊, 等. 断层破碎带与洞室间距对地下水封洞库洞室稳定性的影响研究[J]. 长江科学院院报, 2018, 35(8): 151-153. LIU Peng, ZHAO Qing, CHEN Yilei, et al. Influence of the distance between fault fracture zone and cavern on the stability of underground water-sealed oil storage cavern[J]. Journal of Yangtze River Scientific Research Institute, 2018, 35(8): 151-153.
[16] 魏雪斐. 大型地下水封储库围岩松动圈主动承载体系研究[D]. 北京: 清华大学, 2016. WEI Xuefei. Research on rock loosen zone self-bearing system in large underground water-sealed storage caverns[D].Beijing: Tsinghua University, 2016.
[17] 欧阳伟雄, 贺宝林. 复合材料注浆在地下水封石油洞库工程中的应用[J]. 油气田地面工程, 2022, 41(9): 106-111. OUYANG Weixiong, HE Baolin. Application of composite materials grouting in underground water-sealed oil storage in rock cavern engineering[J]. Oil-Gas Field Surface Engineering, 2022, 41(9): 106-111.
[1] 蒋宇静, 王兴达, 张学朋. 远场地震作用下跨断层深埋隧道结构的动力变形破坏特征[J]. 隧道与地下工程灾害防治, 2023, 5(3): 1-11.
[2] 孙文斌, 曹震博, 董法旭. 断层破碎带岩石裂隙渗透性的表征方法[J]. 隧道与地下工程灾害防治, 2023, 5(1): 1-7.
[3] 赵兴东, 窦翔, 李勇, 王立君. 基于Ventsim的地下水封洞库建造期通风方式优选[J]. 隧道与地下工程灾害防治, 2023, 5(1): 8-17.
[4] 李相兵, 梁波, 鲁思源. 考虑多因素影响的双侧壁导坑法施工参数研究[J]. 隧道与地下工程灾害防治, 2022, 4(2): 39-48.
[5] 赵文强, 周建伟, 袁兆廷, 吴铭祥, 蒋亚龙, 耿大新, 刘长红. 大跨径地下罐室穹顶预留中心岩柱开挖施工围岩稳定性模拟[J]. 隧道与地下工程灾害防治, 2022, 4(2): 81-89.
[6] 王密田, 王迎超, 王楠, 冯帅, 李文豪, 羊嘉杰. 降雨条件下断层隧道突水灾变演化规律[J]. 隧道与地下工程灾害防治, 2021, 3(4): 40-52.
[7] 黄笑, 肖培伟, 董林鹭, 杨兴国, 徐奴文. 高地应力地下洞室群开挖过程岩体力学响应及破坏机制[J]. 隧道与地下工程灾害防治, 2021, 3(3): 85-93.
[8] 禹海涛, 陈志伟. 基于连续-离散耦合方法的隧道开挖对近断层的影响机制研究[J]. 隧道与地下工程灾害防治, 2021, 3(3): 20-28.
[9] 李鹏飞, 刘宏翔, 赵勇, 刘建友, 王帆. 隧道穿越断层破碎带防突水最小安全厚度及其影响因素[J]. 隧道与地下工程灾害防治, 2020, 2(3): 77-84.
[10] 左宇军,万入祯,孙文吉斌,刘镐,林健云,娄义黎. 不同开挖工法对含煤系岩层隧道围岩稳定性影响[J]. 隧道与地下工程灾害防治, 2019, 1(4): 64-74.
[11] 高源, 杨天鸿, 辛全明, 刘飞跃. 北山隧道式大跨度地下四季滑雪场围岩稳定性研究[J]. 隧道与地下工程灾害防治, 2019, 1(3): 109-115.
[12] 董陇军,王钧晖,马举. 不同微震震源机制下地下硐室围岩响应及支护建议[J]. 隧道与地下工程灾害防治, 2019, 1(3): 68-76.
[13] 丁秀丽, 张雨霆, 张传健, 颜天佑, 黄书岭. 隧洞穿越活动断层应对措施及其适应性研究综述[J]. 隧道与地下工程灾害防治, 2019, 1(1): 20-35.
[14] 张庆松, 张连震, 李鹏, 冯啸. 地下工程富水软弱地层注浆加固理论研究新进展[J]. 隧道与地下工程灾害防治, 2019, 1(1): 47-57.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn