|
|
Comprehensive treatments of double shield TBM construction in adverse geological sections |
YANG Jihua1, YAN Changbin2*, QI Sanhong1, GUO Weixin1, YANG Fengwei1
|
1. Yellow River Engineering Consulting Co., Ltd., Zhengzhou 450003, Henan, China; 2. College of Hydraulic and Civil Engineering, Zhengzhou University, Zhengzhou 450001, Henan, China |
|
|
Abstract Aiming at the poor geological conditions of water conveyance tunnel in Lanzhou water source construction engineering by double shield TBM excavation, the comprehensive methods and treatments were put forward by data statistics, engineering analogies, and other methods. Before TBM tunneling, F3 fault zone and F8 fault zone were excavated by drilling and blasting method. After initial support which guaranteed the stability of surrounding rock, TBM slided through and installed segments. Based on geological analysis along tunnel, combination the observation of tunneling face, rock muck analysis and tunneling parameter analysis, the geological conditions of surrounding rock in front of tunneling face were comprehensively predicted by using three-dimension seismic method and three-dimensional resistivity method. The principle of "drainage first, drainage and plugging combined" was adopted, the variable slope drainage system was established, the operation mode of the drainage system was determined according to the amount of water gushing. According to the characteristics of the front shield blocked, the method of releasing surrounding rock pressure by manual excavation of the heading tunnel from the telescopic shield was adopted to make the TBM out of blocked. Based on identifying geological conditions, the use of chemical grouting and cement grouting consolidation broken surrounding rock, controlling TBM tunneling parameters, slow tunneling through the fracture zone. TBM tunnneling practice shows that the adopted technology is effective and the poor geological conditions have not caused serious consequences for TBM.
|
Received: 23 April 2023
Published: 20 June 2023
|
|
|
|
[1] |
李建斌, 陈馈. 双护盾TBM的技术特点及工程应用[J]. 建筑机械化, 2006, 27(3): 46-49. LI Jianbin, CHEN Kui. Technique characters of double shield machine TBM and its application in projects[J]. Construction Mechanization, 2006, 27(3): 46-49.
|
[2] |
黄舰. 青岛地铁区间隧道双护盾TBM地质适应性分析[J]. 现代隧道技术, 2016, 53(3): 42-46. HUANG Jian. On the geological adaptability of the double-shield TBM for the Qingdao metro tunnel[J]. Modern Tunnelling Technology, 2016, 53(3): 42-46.
|
[3] |
王杜娟, 宁向可. 城市地铁双护盾TBM设计及应用[J]. 隧道建设(中英文), 2018, 38(6): 1052-1059. WANG Dujuan, NING Xiangke. Design and application of double-shield TBMs for urban metro tunnels[J]. Tunnel Construction, 2018, 38(6): 1052-1059.
|
[4] |
谢明, 赵晋友. 双护盾隧道掘进机(TBM)技术浅谈[J]. 现代隧道技术, 2006, 43(5): 23-30. XIE Ming, ZHAO Jinyou. Technical features of double-shield tunnel boring machine(TBM)[J]. Modern Tunnelling Technology, 2006, 43(5): 23-30.
|
[5] |
蒙先君. 长距离双护盾TBM施工探讨[J]. 隧道建设(中英文), 2008, 28(4): 429-433. MENG Xianjun. Comments on long-distance tunnel construction by means of double-shield TBMs[J].Tunnel Constuction, 2008, 28(4): 429-433.
|
[6] |
张超. 青海“引大济湟”工程TBM卡机段围岩大变形特性及扩挖洞室支护方案研究[D]. 成都: 成都理工大学, 2012. ZHANG Chao. Research on surrounding rock large deformation characteristics and chamber enlargement support in TBM block tunnel section in “Yindajihuang” Project in Qinghai[D]. Chengdu: Chengdu University of Technology, 2012.
|
[7] |
尚彦军, 杨志法, 曾庆利, 等. TBM施工遇险工程地质问题分析和失误的反思[J]. 岩石力学与工程学报, 2007, 27(12): 2404-2411. SHANG Yanjun, YANG Zhifa, ZENG Qingli, et al. Retrospective analysis of TBM accidents from its poor flexiibility to complicated geological conditions[J]. Chinese Journal of Rock Mechanics and Engineering, 2007,27(12):2404-2411.
|
[8] |
谷婷,卢松,李苍松.引红济石调水工程双护盾TBM施工段卡机脱困地质分析[J].工程地质学报, 2011, 19(增刊1): 437-441. GU Ting, LU Song, LI Cangsong. The sticking machine turnaround geological analysis about the TBM construction in drawing of water delivery tunnel in Yinhongjishi Water Transfer Project[J].Journal of Engineering Geology, 2011, 19(Suppl.1): 437-441.
|
[9] |
陈卫忠, 陈飞飞, 赵武胜, 等. TBM挤压大变形隧洞管片错台及加固机理研究[J]. 山东大学学报(工学版), 2017, 47(2): 1-6. CHEN Weizhong, CHEN Feifei, ZHAO Wusheng, et al. TBM tunnel segment dislocation due to large deformation and reinforcement mechanism on surrounding rockmass[J]. Journal of Shandong University(Engineering Science), 2017, 47(2): 1-6.
|
[10] |
孙金山, 卢文波, 苏利军. 双护盾TBM在软弱地层中的掘进模式选择[J]. 岩石力学与工程学报, 2007, 26(增刊2): 3668-3673. SUN Jinshan, LU Wenbo, SU Lijun.Selection of advancing mode of double-shielded TBM in weak rock masses[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(Suppl.2): 3668-3673.
|
[11] |
喻伟, 王利明, 周建军, 等. 基于断层影响双护盾TBM隧道稳定性分析及加固措施研究[J]. 河南科学, 2018, 36(6): 870-879. YU Wei, WANG Liming, ZHOU Jianjun, et al. Stability analysis and reinforcement study of double shield TBM tunnel based on fault geology[J]. Henan Science, 2018, 36(6): 870-879.
|
[12] |
杨继华, 杨风威, 姚阳, 等. CCS水电站引水隧洞TBM断层带卡机脱困技术[J]. 水利水电科技进展, 2017, 37(5): 89-94. YANG Jihua, YANG Fengwei, YAO Yang, et al. Technology for TBM unblocking in a fault zone at CCS Hydropower Station headrace tunnel[J]. Advances in Science and Technology of Water Resources, 2017, 37(5): 89-94.
|
[13] |
杨继华, 苗栋, 杨风威, 等. CCS水电站输水隧洞双护盾TBM穿越不良地质段的处理技术[J]. 资源环境与工程, 2016, 30(3): 539-542. YANG Jihua, MIAO Dong, YANG Fengwei, et al. Treatment technology of crossing unfavorable geological tunnel section by double shield TBM at CCS Hydropower Station water conveyance tunnel[J]. Resources Environment & Engineering, 2016, 30(3): 539-542.
|
[14] |
温森, 徐卫亚. 洞室变形引起的双护盾TBM施工事故风险分析[J]. 岩石力学与工程学报, 2011, 30(增刊1): 3060-3065. WEN Sen, XU Weiya. Risk analysis of double shield TBM construction accident induced by tunnel deformation[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(Suppl.1): 3060-3065.
|
[15] |
石怡安, 苏凯, 王美斋, 等. TBM引水隧洞衬砌管片形式研究[J]. 水电能源科学, 2016, 34(4): 103-106. SHI Yian, SU Kai, WANG Meizhai, et al. Study on segment types of TBM diversion tunnel lining[J]. Water Resources and Power, 2016, 34(4): 103-106.
|
[16] |
宁向可, 姜桥, 田鹏. 国产双护盾TBM在兰州市水源地建设工程中的应用[J]. 隧道建设, 2017, 37(增刊1): 149-154. NING Xiangke, JIANG Qiao, TIAN Peng. Application of domestic double-shield TBM to construction of Lanzhou water source project[J]. Tunnel Construction, 2017, 37(Suppl.1): 149-154.
|
[17] |
中华人民共和国水利部. 水利水电工程地质勘察规范:GB50487—2008[S]. 北京: 中国计划出版社, 2009.
|
[18] |
李术才, 刘斌, 孙怀凤, 等. 隧道施工超前地质预报研究现状及发展趋势[J]. 岩石力学与工程学报, 2014, 33(6): 1090-1113. LI Shucai, LIU Bin, SUN Huaifeng, et al. State of art and trends of advanced geological prediction in tunnel construction[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(6): 1090-1113.
|
[19] |
席锦州, 周捷. TRT6000超前地质预报系统在新铜锣山隧道中的运用[J]. 现代隧道技术, 2012, 49(5): 137-141. XI Jinzhou, ZHOU Jie. Application of the TRT6000 geological prediction system in the construction of the new Tongluoshan tunnel[J]. Modern Tunnelling Technology, 2012, 49(5): 137-141.
|
[20] |
刘斌, 聂利超, 李术才, 等. 三维电阻率空间结构约束反演成像方法[J]. 岩石力学与工程学报, 2012, 31(11): 2258-2268. LIU Bin, NIE Lichao, LI Shucai, et al. 3D electrical resistivity inversion tomography with spatial structural constraint[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(11): 2258-2268.
|
[21] |
廖建明. 锦屏二级水电站引水隧洞TBM应对高压大流量地下涌水施工方案[J]. 河北交通职业技术学院学报, 2016, 13(2): 36-39. LIAO Jianming. Construction scheme research on Jinping 2-cascade Hydropower Station diversion tunnel TBM with high pressure and large flow of underground water[J]. Journal of Hebei Jiaotong Vocational & Technical College, 2016, 13(2): 36-39.
|
[23] |
中水东北勘测设计研究有限责任公司. 水利水电地下工程施工组织设计规范: SL 642—2013[S]. 北京: 中国水利水电出版社, 2013.
|
No related articles found! |
|
|
|
|