Please wait a minute...
 
隧道与地下工程灾害防治  2021, Vol. 3 Issue (3): 59-75    DOI: 10.19952/j.cnki.2096-5052.2021.03.07
  先进计算方法在隧道与岩土工程中的应用 本期目录 | 过刊浏览 | 高级检索 |
基于RKPM-PD方法的岩石裂纹扩展数值模拟
崔昊1,2,闫自海1,胡建华1,郑宏2
1.中国电建集团华东勘测设计研究院有限公司, 浙江 杭州 311122;2.北京工业大学城市建设学部 北京 100124
Numerical simulations of crack propagation in rock based on the RKPM-PD coupling method
CUI Hao1,2, YAN Zihai1, HU Jianhua1, ZHENG Hong2
1. Power China Huadong Engineering Co., Ltd., Hangzhou 311122, Zhejiang, China;
2. Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, China
下载:  PDF (10891KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 基于非局部理论的近场动力学(peridynamic, PD)方法在求解岩石裂纹扩展问题时具备极大的优势,但同时也面临零能模式与边界效应等问题。为解决上述问题,证明非常规态基PD方法等价于采用节点积分的伽辽金弱形式方法,并将非常规态基PD中变形梯度F的求解方式推广为更一般的PD微分算子(peridynamic differential operator, PDDO)近似。由于该近似与重构核粒子(reproducing kernel particle method, RKPM)近似具有相同的位移近似函数,详细对比分析两方法位移导数近似间的差异性,得到PDDO近似不满足相容性条件的结论,并形成了具备更高精度的RKPM-PD耦合算法。若干数值算例证明了该耦合算法在预测岩石动态裂纹扩展中的准确性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
崔昊
闫自海
胡建华
郑宏
关键词:  近场动力学  无网格方法  伽辽金法  裂纹扩展    
Abstract: The peridynamic method had great advantages in solving the problem of crack propagation in rock material due to its nonlocal characteristics. However, the method also faced problems such as zero-energy mode and boundary effects. In order to solve the above problems, the paper first proved that the non-ordinary state-based peridynamic(NOSB-PD)method was equivalent to the Galerkin weak form with nodal integral scheme. The equation of solving the deformation gradient F in NOSB-PD method was extended to a more general form, namely the peridynamic differential operator(PDDO)approximation. Since the PDDO had the same displacement approximation with the reconstruction kernel particle method(RKPM), this paper compared the difference between the two methods in the approximations of displacement derivatives in detail. The RKPM-PD coupling method with higher accuracy was proposed in the paper. Several numerical examples proved the accuracy of the new method in predicting the dynamic crack propagation in rock.
Key words:  peridynamic    meshless method    galerkin method    crack propagation
收稿日期:  2021-07-01      修回日期:  2021-08-04      发布日期:  2021-09-20     
中图分类号:  O343  
作者简介:  崔昊(1993— ),男,山西长治人,博士,工程师,主要研究方向为计算岩石力学. E-mail: cuihaocumt@163.com
引用本文:    
崔昊, 闫自海, 胡建华, 郑宏. 基于RKPM-PD方法的岩石裂纹扩展数值模拟[J]. 隧道与地下工程灾害防治, 2021, 3(3): 59-75.
CUI Hao, YAN Zihai, HU Jianhua, ZHENG Hong. Numerical simulations of crack propagation in rock based on the RKPM-PD coupling method. Hazard Control in Tunnelling and Underground Engineering, 2021, 3(3): 59-75.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2021/V3/I3/59
[1] 周宗青,李利平,石少帅,等.隧道突涌水机制与渗透破坏灾变过程模拟研究[J].岩土力学,2020,41(11): 3621-3631. ZHOU Zongqing, LI Liping, SHI Shaoshuai, et al. Study on tunnel water inrush mechanism and simulation of seepage failure process[J]. Rock and Soil Mechanics, 2020, 41(11):3621-3631.
[2] 佘诗刚,林鹏. 中国岩石工程若干进展与挑战[J]. 岩石力学与工程学报, 2014,33(3): 433-457. SHE Shigang, LIN Peng. Some developments and challenging issues in rock engineering field in China[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(3): 433-457.
[3] SILLING S A. Reformulation of elasticity theory for discontinuities and long-range forces[J]. Journal of the Mechanics and Physics of Solids, 2000, 48(1):175-209.
[4] SILLING S A,EPTON M, WECKNER O, et al. Peridynamic states and constitutive modeling[J]. Journal of Elasticity, 2007, 88(2): 151-184.
[5] HA Y D, LEE J, HONG J W. Fracturing patterns of rock-like materials in compression captured with peridynamics[J]. Engineering Fracture Mechanics, 2015, 144:176-193.
[6] LEE J, HA Y D, HONG J W.Crack coalescence morphology in rock-like material under compression[J]. International Journal of Fracture, 2017, 203(1): 211-236.
[7] ZHOU X P, GU X B, WANG Y T. Numerical simulations of propagation, bifurcation and coalescence of cracks in rocks[J].International Journal of Rock Mechanics and Mining Sciences, 2015, 80:241-254.
[8] WANG Y T, ZHOU X P, XU X.Numerical simulation of propagation and coalescence of flaws in rock materials under compressive loads using the extended non-ordinary state-based peridynamics[J]. Engineering Fracture Mechanics, 2016, 163:248-273.
[9] 谷新保.近场动力学理论及其在岩石类材料变形破坏过程的数值模拟[D]. 重庆: 重庆大学, 2015. GU Xinbao. Peridynamic theory and its numerical simulation in the deformation and damage process of the rock-like materials[D]. Chongqing: Chongqing University, 2015.
[10] 寿云东. 裂隙岩体温度场-渗流场-应力场耦合问题的近场动力学模拟分析[D]. 重庆: 重庆大学, 2017. SHOU Yundong. Peridynamic numerical simulation of thermo-hydro-mechanical coupled problems in crack-weakened rock[D]. Chongqing: Chongqing University, 2017.
[11] BESSA M A, FOSTER J T, BELYTSCHKO T, et al. A meshfree unification: reproducing kernel peridynamics[J]. Computational Mechanics, 2014, 53(6):1251-1264.
[12] 杨永涛.多裂纹动态扩展的数值流形法[D]. 北京: 中国科学院大学, 2015. YANG Yongtao. Multiple dynamic crack propagation based on the numerical manifold method[D]. Beijing: University of Chinese Academy of Sciences, 2015.
[13] BELYTSCHKO T, GUO Y, LIU W K,et al. A unified stability analysis of meshless particle methods[J]. International Journal for Numerical Methods in Engineering, 2000, 48(9):1359-1400.
[14] SUN G H, LIN S, ZHENG H, et al. The virtual element method strength reduction technique for the stability analysis of stony soil slopes[J]. Computers and Geotechnics, 2020, 119: 103349.
[15] MADENCI E, BARUT A, FUTCH M. Peridynamic differential operator and its applications[J]. Computer Methods in Applied Mechanics and Engineering, 2016, 304: 408-451.
[16] LIU G R, GU Y T. An introduction to meshfree methods and their programming[M]. Berlin, Germany: Springer, 2005:97-106.
[17] 张雄, 刘岩. 无网格法[M]. 北京: 清华大学出版社, 2004.
[18] CUI H, LI C G, ZHENG H. Ahigher-order stress point method for non-ordinary state-based peridynamics[J]. Engineering Analysis with Boundary Elements, 2020, 117:104-118.
[19] BOCCA P, CARPINTERI A, VALENTE S. Size effects in the mixed mode crack propagation:softening and snap-back analysis[J]. Engineering Fracture Mechanics, 1990, 35(1): 159-170.
[20] RABCZUK T, REN H L. A peridynamics formulation for quasi-static fracture and contact in rock[J]. Engineering Geology, 2017, 225:42-48.
[21] HAERI H, SHAHRIAR K, MARJI M F, et al. Experimental and numerical study of crack propagation and coalescence in pre-cracked rock-like disks[J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 67:20-28.
[22] NING Y J, AN X M, MA G W. Footwall slope stability analysis with the numerical manifold method[J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48(6):964-975.
[23] YANG S K, MA G W, REN X H, et al. Cover refinement of numerical manifold method for crack propagation simulation[J]. Engineering Analysis with Boundary Elements, 2014, 43:37-49.
[24] NING Y J, YANG J, AN X M, et al. Modelling rock fracturing and blast-induced rock mass failure via advanced discretisation within the discontinuous deformation analysis framework[J]. Computers and Geotechnics, 2011, 38(1):40-49.
[25] CARPINTERI A, VALENTE S, FERRARA G, et al. Experimental and numerical fracture modelling of a gravity dam[J]. Fracture Mechanics of Concrete Structures, 1994: 351-360.
[26] BARPI F, VALENTE S. Numerical simulation of prenotched gravity dam models[J]. Journal of Engineering Mechanics, 2000, 126(6):611-619.
[27] ZHENG H, YANG Y T, SHI G H. Reformulation of dynamic crack propagation using the numerical manifold method[J].Engineering Analysis with Boundary Elements, 2019, 105: 279-295.
[28] SHI M G, ZHONG H, OOI E T, et al. Modelling of crack propagation of gravity dams by scaled boundary polygons and cohesive crack model[J]. International Journal of Fracture, 2013, 183(1): 29-48.
[29] 吴宪锴.岩石三维裂纹扩展机制的物理与数值试验研究[D]. 大连: 大连理工大学, 2016. WU Xiankai. Experimental and numerical study on propagation mechanism of three-dimension crack of rock specimens[D]. Dalian: Dalian University of Technology, 2016.
[30] 徐栋栋.多裂纹扩展的数值流形法[D]. 北京: 中国科学院大学, 2014. XU Dongdong. Multiple crack propagation based on the numerical manifold method[D]. Beijing: University of Chinese Academy of Sciences, 2014.
[1] 孙港, 王军祥, 孟祥竹, 郭连军, 孙杰. 基于近场动力学理论的岩石双孔爆破动态断裂行为数值模拟[J]. 隧道与地下工程灾害防治, 2023, 5(2): 42-58.
[1] QIAN Qihu. Scientific use of the urban underground space to construction the harmonious livable and beautiful city[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 1 -7 .
[2] DENG Mingjiang, LIU Bin. Challenges, countermeasures and development direction of geological forward-prospecting for TBM cluster tunneling in super-long tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 8 -19 .
[3] DING Xiuli, ZHANG Yuting, ZHANG Chuanjian, YAN Tianyou, HUANG Shuling. Review on countermeasures and their adaptability evaluation to tunnels crossing active faults[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 20 -35 .
[4] JIAO Yuyong, ZHANG Weishe, OU Guangzhao, ZOU Junpeng, CHEN Guanghui. Review of the evolution and mitigation of the water-inrush disaster in drilling-and-blasting excavated deep-buried tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 36 -46 .
[5] ZHANG Qingsong, ZHANG Lianzhen, LI Peng, FENG Xiao. New progress in grouting reinforcement theory of water-rich soft stratum in underground engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 47 -57 .
[6] XIA Kaiwen, XU Ying, CHEN Rong. Dynamic tests of rocks subjected to simulated deep underground environments[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 58 -75 .
[7] HONG Kairong. Study on rock breaking and wear of TBM hob in high-strength high-abrasion stratum[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 76 -85 .
[8] TAN Zhongsheng. Application experimental study of high-strength lattice girders with heat treatment in tunnel engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 86 -92 .
[9] CHEN Jianxun, LUO Yanbin. The stability of structure and its control technology for lager-span loess tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 93 -101 .
[10] JING Hongwen, YU Liyuan, SU Haijian, GU Jincai, YIN Qian. Development and application of catastrophic experiment system for water inrush in surrounding rock of deep tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 102 -110 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn