Please wait a minute...
 
隧道与地下工程灾害防治  2024, Vol. 6 Issue (4): 61-71    DOI: 10.19952/j.cnki.2096-5052.2024.04.07
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
下穿码头危化品堆场的超大直径盾构隧道抗爆性能评估方法
赵泽乾1,朱旻1,2,3*,包小华1,2,3,杨春山4,陈湘生1,2,3
1.深圳大学土木与交通工程学院, 广东 深圳 518060;2.极端环境岩土和隧道工程智能建养全国重点实验室, 广东 深圳 518060; 3.矿山深井建设技术国家工程研究中心, 广东 深圳 518060;4.广州市市政工程设计研究总院有限公司, 广东 广州 510120
Assessing the blast resistance performance of ultra-large diameter shield tunnels passing under hazardous chemical containers at docks
ZHAO Zeqian1, ZHU Min1,2,3*, BAO Xiaohua1,2,3, YANG Chunshan4, CHEN Xiangsheng1,2,3
1. College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China;
2. State Key Laboratory of Intelligent Geotechnics and Tunnelling, Shenzhen 518060, Guangdong, China;
3. National Engineering Research Center of Deep Shaft Construction, Shenzhen 518060, Guangdong, China;
4.Guangzhou Municipal Engineering Design Research Institute Co., Ltd., Guangzhou 510120, Guangdong, China
下载: 
输出:  BibTeX | EndNote (RIS)      
摘要 为评估地面爆炸荷载下超大直径盾构隧道的抗冲击性能,采用流固耦合的方法建立地面爆炸荷载下超大直径盾构隧道三维精细化有限元模型,通过比较不同炸药当量、埋深、偏心距离下盾构隧道的影响,根据最大变形和螺栓屈服数量建立隧道性能指标,将隧道按照爆炸后的损伤程度划为四个安全等级,确定地面爆炸荷载下超大直径盾构隧道影响分区,可为下穿危险品堆场区域的盾构隧道选址和加固提供理论依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵泽乾
朱旻
包小华
杨春山
陈湘生
关键词:  地面爆炸  数值模拟  超大直径盾构隧道  抗爆性能  影响分区    
Abstract: To evaluate the impact resistance of super-large diameter shield tunnels under ground explosion loads, a three-dimensional refined finite element model was established using the fluid-solid coupling method. The influences on the shield tunnels under various explosive equivalents, burial depths and eccentric distances were compared. Tunnel performance indexes were formulated based on the maximum deformation and the quantity of yielded bolts. Subsequently, the tunnels were classified into four safety levels according to the post-explosion damage extent, and the influence zones of the super-large diameter shield tunnels under ground explosion loads were determined. This research could serve as a theoretical foundation for the site selection and reinforcement of shield tunnels traversing hazardous goods storage yard areas.
Key words:  surface blast    numerical simulation    ultra-large diameter shield tunnel    blast resistance performance    impact zone
收稿日期:  2024-09-20      修回日期:  2024-11-04      发布日期:  2025-01-08     
中图分类号:  TU433  
基金资助: 深圳市高等院校稳定支持计划面上资助项目(20220810144837004)
作者简介:  赵泽乾(2000— ),男,山西太原人,硕士研究生,主要研究方向为爆炸荷载对盾构隧道的响应. E-mail:1668187716@qq.com. *通信作者简介:朱旻(1990— ),男,江苏淮安人,副研究员,硕士生导师,博士,主要研究方向为岩土与隧道工程. E-mail:zhuminfnf@163.com
引用本文:    
赵泽乾, 朱旻, 包小华, 杨春山, 陈湘生. 下穿码头危化品堆场的超大直径盾构隧道抗爆性能评估方法[J]. 隧道与地下工程灾害防治, 2024, 6(4): 61-71.
ZHAO Zeqian, ZHU Min, BAO Xiaohua, YANG Chunshan, CHEN Xiangsheng. Assessing the blast resistance performance of ultra-large diameter shield tunnels passing under hazardous chemical containers at docks. Hazard Control in Tunnelling and Underground Engineering, 2024, 6(4): 61-71.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2024/V6/I4/61
[1] 张维. 天津港“8·12”瑞海公司危险品仓库特别重大火灾爆炸事故调查报告[EB/OL].(2016-02-05)[2024-12-19]. https: //www.gov.cn/foot/2016-02/05/ content_5039788.html.
[2] 胡广霞, 段晓瑞. 危险货物集装箱堆场爆炸地震效应对地下结构的安全影响分析[J]. 中国安全生产科学技术, 2017, 13(4): 142-147. HU Guangxia, DUAN Xiaorui. Analysis on safety influence of seismic effect by explosion in container yard of dangerous goods on underground structure[J]. Journal of Safety Science and Technology, 2017, 13(4): 142-147.
[3] SONG K J, LONG Y, JI C, et al. Experimental and numerical studies on the deformation and tearing of X70 pipelines subjected to localized blast loading[J]. Thin-Walled Structures, 2016, 107: 156-168.
[4] DE A. Numerical simulation of surface explosions over dry, cohesionless soil[J]. Computers and Geotechnics, 2012, 43: 72-79.
[5] 赵跃堂, 易义君, 储程. 一种提高管片隧道衬砌结构抗内爆炸性能的工程措施研究[J]. 振动与冲击, 2017, 36(8): 41-47. ZHAO Yuetang, YI Yijun, CHU Cheng. A method to improve internal explosion resistance performance of segmental lining structures[J]. Journal of Vibration and Shock, 2017, 36(8): 41-47.
[6] 杨广栋, 王高辉, 李麒, 等. 爆炸冲击下水底隧道的动态响应及毁伤模式研究[J]. 振动与冲击, 2022, 41(4): 150-158. YANG Guangdong, WANG Gaohui, LI Qi, et al. Dynamic response and damage patterns of underwater tunnel subjected to blast loads[J]. Journal of Vibration and Shock, 2022, 41(4): 150-158.
[7] 章毅, 周布奎, 于潇, 等. 地面炸药库爆炸对地铁隧道的影响[J]. 防护工程, 2019, 41(3): 33-37. ZHANG Yi, ZHOU Bukui, YU Xiao, et al. Effect of accidental explosion of ground explosive depot on metro tunnel[J]. Protective Engineering, 2019, 41(3): 33-37.
[8] 刘扬, 宋春明, 卢浩. 爆炸荷载下盾构管片的动力响应分析[J]. 振动与冲击, 2014, 33(5): 120-124. LIU Yang, SONG Chunming, LU Hao. A simplified calculation method for dynamic response of a shield tunnel segment subjected to explosion loads[J]. Journal of Vibration and Shock, 2014, 33(5): 120-124.
[9] 邬玉斌, 田志敏, 罗奇峰. 偶然性内爆炸作用下盾构隧道的破坏特性分析[J]. 岩石力学与工程学报, 2011, 30(增刊2):3434-3442. WU Yubin, TIAN Zhimin, LUO Qifeng. Analysis on failure characteristics of shield tunnel under accidentally internal explosion loading[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(Suppl.2): 3434-3442.
[10] 杨广栋, 王高辉, 卢文波, 等. 地表爆炸荷载作用下大型输水箱涵的毁伤评估及防护效应分析[J]. 振动与冲击, 2019, 38(5): 28-37. YANG Guangdong, WANG Gaohui, LU Wenbo, et al. Damage evaluation and protective effect analysis for a large-scale water transmission box culvert under action of ground surface blast loads[J]. Journal of Vibration and Shock, 2019, 38(5): 28-37.
[11] 单生彪, 汪亦显, 郭盼盼, 等. 爆炸冲击下盾构隧道衬砌结构的动力响应特性[J]. 解放军理工大学学报(自然科学版), 2016(4): 315-321. SHAN Shengbiao, WANG Yixian, GUO Panpan, et al. Dynamic response characteristics of shield tunnel lining structure subjected to blasting shock[J]. Journal of PLA University of Science and Technology(Natural Science Edition), 2016(4): 315-321.
[12] 邬玉斌, 刘如山, 田志敏. 盾构隧道管片接头在内爆炸作用下的动力反应[J]. 武汉理工大学学报, 2011, 33(7): 107-111. WU Yubin, LIU Rushan, TIAN Zhimin. Analysis on dynamic response of a shield tunnel under internal explosion loading[J]. Journal of Wuhan University of Technology, 2011, 33(7): 107-111.
[13] MANDAL J, AGARWAL A K, GOEL M D. Numerical modeling of shallow buried tunnel subject to surface blast loading[J]. Journal of Performance of Constructed Facilities, 2020, 34(6): 04020106.
[14] MUSSA M H, MUTALIB A A, HAMID R, et al. Assessment of damage to an underground box tunnel by a surface explosion[J]. Tunnelling and Underground Space Technology, 2017, 66: 64-76.
[15] YANG G D, WANG G H, LU W B, et al. Numerical modeling of surface explosion effects on shallow-buried box culvert behavior during the water diversion[J]. Thin-Walled Structures, 2018, 133: 153-168.
[16] CHI K Y, LI J, WU C Q. Numerical simulation of buried steel pipelines subjected to ground surface blast loading[J]. Thin-Walled Structures, 2023, 186: 110716.
[17] JAYASINGHE L B, THAMBIRATNAM D P, PERERA N, et al. Blast response and failure analysis of pile foundations subjected to surface explosion[J]. Engineering Failure Analysis, 2014, 39: 41-54.
[18] DE A, MORGANTE A N, ZIMMIE T F. Numerical and physical modeling of geofoam barriers as protection against effects of surface blast on underground tunnels[J]. Geotextiles and Geomembranes, 2016, 44(1): 1-12.
[19] ZHAO D B, HUANG Y T, CHEN X S, et al. Numerical investigations on dynamic responses of subway segmental tunnel lining structures under internal blasts[J]. Tunnelling and Underground Space Technology, 2023, 135: 105058.
[20] 杨广栋, 王高辉, 卢文波, 等. 地表爆炸荷载作用下大型输水箱涵的毁伤评估及防护效应分析[J]. 振动与冲击, 2019, 38(5): 28-37. YANG Guangdong, WANG Gaohui, LU Wenbo, et al. Damage evaluation and protective effect analysis for a large-scale water transmission box culvert under action of ground surface blast loads[J]. Journal of Vibration and Shock, 2019, 38(5): 28-37.
[21] 汪维. 钢筋混凝土构件在爆炸载荷作用下的毁伤效应及评估方法研究[D]. 长沙:国防科技大学, 2012. WANG Wei. Study on damage effects and assessments method of reinforced concrete structural members under blast loading[D]. Changsha: National University of Defense Technology, 2012.
[22] TM 5-855-1. Fundamental of protective design for conventional weapons[M]. Vicksburg,US: US Army Engineers Waterways Experimental Station, 1984.
[23] KONESHWARAN S, THAMBIRATNAM D P, GALLAGE C. Blast response and failure analysis of a segmented buried tunnel[J]. Structural Engineering International, 2015, 25(4): 419-431.
[1] 王圣涛, 陈鹏涛, 刘爱武, 孙文昊, 张俊儒. 特大跨连续变断面隧道双导洞超前-中柱反向扩挖的施工力学行为[J]. 隧道与地下工程灾害防治, 2024, 6(4): 1-11.
[2] 李启弟, 梁庆国, 周仁, 杨家伟, 蔡遵乐. 甘青隧道初始地应力场分析及岩爆预测[J]. 隧道与地下工程灾害防治, 2024, 6(4): 50-60.
[3] 杨立,夏增选,娄文杰,刘杉,李奉庭,武科. 山区深埋公路隧道穿越断层破碎带施工稳定性[J]. 隧道与地下工程灾害防治, 2024, 6(3): 32-42.
[4] 田瑞端,莫冠旺,李响. 超大断面扁平结构隧道矿山法超欠挖优化控制研究[J]. 隧道与地下工程灾害防治, 2024, 6(2): 84-98.
[5] 刘向阳,罗兵兵,吴静,张学富,黄耀明,李林杰. 高地温施工隧道冰块与通风组合降温效果对比研究[J]. 隧道与地下工程灾害防治, 2024, 6(2): 66-75.
[6] 闫治国, 王紫锐, 沈奕, 刘康. 碳氢曲线下大直径盾构隧道结构热力特性[J]. 隧道与地下工程灾害防治, 2024, 6(2): 25-36.
[7] 彭益, 张文, 王汉勋, 张彬, 孙哲. 某海岛地下水封油库渗流场数值模拟[J]. 隧道与地下工程灾害防治, 2024, 6(1): 94-104.
[8] 张宁, 黄新杰, 王川, 徐彬, 张建成, 张波. 高压水射流切割混凝土试验与数值模拟[J]. 隧道与地下工程灾害防治, 2023, 5(4): 47-56.
[9] 王伟, 刘英, 庄海洋, 赵凯, 陈国兴. 考虑内部结构的大直径盾构隧道抗震性能[J]. 隧道与地下工程灾害防治, 2023, 5(3): 78-85.
[10] 孙港, 王军祥, 孟祥竹, 郭连军, 孙杰. 基于近场动力学理论的岩石双孔爆破动态断裂行为数值模拟[J]. 隧道与地下工程灾害防治, 2023, 5(2): 42-58.
[11] 党晓宇, 马劲松. 基于桩板组合结构等代仰拱的公路隧道加固方案[J]. 隧道与地下工程灾害防治, 2023, 5(1): 90-96.
[12] 赵兴东, 窦翔, 李勇, 王立君. 基于Ventsim的地下水封洞库建造期通风方式优选[J]. 隧道与地下工程灾害防治, 2023, 5(1): 8-17.
[13] 黄兴, 张炜, 殷建钢, 施皓, 张晓磊. 填埋场扩建后下穿隧道结构的安全性[J]. 隧道与地下工程灾害防治, 2023, 5(1): 55-63.
[14] 关振长, 周宇轩, 吕春波, 吕荔炫. 空气间隔装药周边眼爆破精细化数值模拟[J]. 隧道与地下工程灾害防治, 2022, 4(4): 11-19.
[15] 黄昕, 谷冠思, 张子新, 李昀. 考虑渗流的泥水平衡盾构隧道稳定性数值模拟[J]. 隧道与地下工程灾害防治, 2022, 4(2): 28-38.
[1] WANG Shengtao, CHEN Pengtao, LIU Aiwu, SUN Wenhao, ZHANG Junru. Construction mechanics behavior of extra-large span continuous variable cross-section tunnels using dual guide tunnel advance-central column reverse excavation method[J]. Hazard Control in Tunnelling and Underground Engineering, 2024, 6(4): 1 -11 .
[2] SONG Changqing, FANG Xiaozheng, XIE Ji'an. Traffic noise data quality control method and its application in surface wave exploration[J]. Hazard Control in Tunnelling and Underground Engineering, 2024, 6(4): 20 -26 .
[3] LIU Liying, OU Zhenfeng, YANG Chunshan, DUAN Shanglei. Numerical simulation and field measurement analysis of coastal structures under immersed tunnel trench excavation[J]. Hazard Control in Tunnelling and Underground Engineering, 2024, 6(4): 12 -19 .
[4] SUN Chao, ZHANG Guangwei, DA Wuqiang, YU Zufeng. Anti-floating control technology for large-diameter shield tunnels of adjacent mountain[J]. Hazard Control in Tunnelling and Underground Engineering, 2024, 6(4): 27 -37 .
[5] LIU Jianbin, YANG Zhiyong, RAO Li, WANG Shuying, FANG Kejun, WANG Zhuo, YANG Zebin. Optimization of construction logistics organization for multi-section service tunnels in ultra-deep shafts[J]. Hazard Control in Tunnelling and Underground Engineering, 2024, 6(4): 38 -49 .
[6] GAO Xiancheng. Research on coal damage identification model based on ConDenseNet architecture and its optimization[J]. Hazard Control in Tunnelling and Underground Engineering, 2024, 6(4): 90 -98 .
[7] LI Qidi, LIANG Qingguo, ZHOU Ren, YANG Jiawei, CAI Zunle. Analysis of initial ground stress field and prediction of rockurst in Ganqing Tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2024, 6(4): 50 -60 .
[8] ZHONG Jianmin, ZHANG Liangliang, HE Yingdao, LUO Chiheng, XIONG Yifan, WANG Chao. Key design techniques of the north extension project of Jinan Jiluo Road Yellow River Tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2024, 6(4): 72 -80 .
[9] WEI Songyuan, LI Hanshuo, PENG Zhenhua, WANG Zhechao, LI Wei. Experimental analysis of vertical water curtain and effectiveness of water curtain system in an underground water sealed cavern[J]. Hazard Control in Tunnelling and Underground Engineering, 2024, 6(4): 81 -89 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn