Please wait a minute...
 
隧道与地下工程灾害防治  2025, Vol. 7 Issue (4): 96-102    DOI: 10.19952/j.cnki.2096-5052.2025.04.09
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
基于C/S架构的管片错台智能检测仪开发
徐铭泽1,2,林楠1,2,郭威3,谢立夫3,关振长3*
1.上海建科工程咨询有限公司, 上海 200032;2.上海市工程结构安全重点实验室, 上海 200032;3.福州大学土木工程学院, 福建 福州 350116
Intelligent inspector for segment dislocation based on C/S architecture
XU Mingze1,2, LIN Nan1,2, GUO Wei3, XIE Lifu3, GUAN Zhenchang3*
1. Shanghai Jianke Engineering Consulting Co., Ltd., Shanghai 200032, China;
2. Shanghai Key Laboratory of Engineering Structure Safety, Shanghai 200032, China;
3. College of Civil Engineering, Fuzhou University, Fuzhou 350116, Fujian, China
下载:  PDF (6116KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对传统盾构隧道管片错台测量方法存在设备成本高、计算效率低等问题,设计开发一款基于C/S架构的智能检测仪。硬件层面以树莓派4B为主控制模块,通过集成CMOS传感器的双目摄像头与LED显示屏等硬件,实现管片图像实时采集与显示。软件方面基于TCP/IP通信协议,实现前/后端功能解耦,客户端部署于智能检测仪,负责摄像头调用、图像采集、数据传输及结果可视化;服务端部署于消费级计算机,负责数据监听、双目视觉测距核心算法调用及结果回传。将上述智能检测仪应用于福州滨海快线某区间盾构隧道,结果表明:计算值与焊缝规实测值基本一致,错台测量精度达亚毫米级别;且单次检测耗时仅5.40 s,可在保证测量精度的同时有效提升工程检测效率。以上研究成果可为盾构隧道管片错台快速精准检测提供一种新思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐铭泽
林楠
郭威
谢立夫
关振长
关键词:  智能检测仪  管片错台  C/S架构  TCP/IP通信协议  双目视觉测量    
Abstract: Traditional methods for measuring segment dislocation in shield tunnels suffer from disadvantages such as high equipment costs and low computational efficiency. To address these issues, an intelligent inspector based on a Client/Server(C/S)architecture was designed and developed. For the hardware, the Raspberry Pi 4B was employed as the main control module, integrated with a binocular camera equipped with a CMOS sensor and an LED display, to enable real-time image acquisition and display. On the software side, a decoupling of the front-end and back-end functions was implemented based on the TCP/IP protocol. The client(front-end), deployed on the intelligent inspector, handled camera invocation, image acquisition, data transmission, and result visualization. The server(back-end), deployed on a consumer-grade computer, was responsible for data listening, invoking the core binocular vision ranging algorithm, and returning the results. The proposed inspector was applied to a section of the Fuzhou Binhai Express Line shield tunnel. The experimental results showed that the calculated values agreed well with the measurements from a weld gauge, achieving a sub-millimeter accuracy in segment dislocation measurement. A single detection took only 5.40 seconds, effectively improving inspection efficiency while ensuring measurement accuracy. This study provides a new approach for the rapid and accurate inspection of segment dislocation in shield tunnels.
Key words:  intelligent inspector    segment dislocation    C/S architecture    TCP/IP communication protocol    binocular vision measurement
发布日期:  2025-12-29     
中图分类号:  U458  
  TP274+.5  
基金资助: 国家自然科学基金资助项目(52278399)
作者简介:  徐铭泽(1994— ),男,上海人,工程师,博士,主要研究方向为土木工程检测与监测. E-mail:xumingze@jkec.com.cn. *通信作者简介:关振长(1980— ),男,福建福州人,教授,博士生导师,博士,主要研究方向为机器视觉智能检测. E-mail:zcguan@fzu.edu.cn
引用本文:    
徐铭泽, 林楠, 郭威, 谢立夫, 关振长. 基于C/S架构的管片错台智能检测仪开发[J]. 隧道与地下工程灾害防治, 2025, 7(4): 96-102.
XU Mingze, LIN Nan, GUO Wei, XIE Lifu, GUAN Zhenchang. Intelligent inspector for segment dislocation based on C/S architecture. Hazard Control in Tunnelling and Underground Engineering, 2025, 7(4): 96-102.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2025/V7/I4/96
[1] 葛双双, 高玮, 汪义伟, 等. 我国交通盾构隧道病害、评价及治理研究综述[J]. 土木工程学报, 2023, 56(1): 119-128. GE Shuangshuang, GAO Wei, WANG Yiwei, et al. Review on evaluation and treatment of traffic shield tunnel defects in China[J]. China Civil Engineering Journal, 2023, 56(1): 119-128.
[2] 莫伟樑, 杨雨冰, 林越翔, 等. 基于OFDR技术的盾构隧道管片错台变形测量与计算方法[J]. 现代隧道技术, 2022, 59(5): 179-187. MO Weiliang, YANG Yubing, LIN Yuexiang, et al. Measurement and calculation method for shield tunnel segment dislocation deformation based on OFDR technology[J]. Modern Tunnelling Technology, 2022, 59(5): 179-187.
[3] JIAO T, ZHOU Z. An optical-electrical co-sensing tape for cross-sectional deformation monitoring of shield tunnels[J]. Tunnelling and Underground Space Technology, 2021, 117: 104148.
[4] ZHANG L, CUI Y F, SHI B. Complex deformation monitoring of shield tunnel segment joints using distributed fiber optic sensing technology: experimental verification[J]. IEEE Sensors Journal, 2022, 22(4): 3236-3245.
[5] 鲍艳, BOM Kim Il, 李文海, 等. 基于点云的地铁盾构隧道环内管片错台量与接缝张开量检测方法[J]. 城市轨道交通研究, 2023, 26(9): 143-149. BAO Yan, BOM K I, LI Wenhai, et al. Detection method for metro shield tunnel inner-ring segment staggering and joint opening based on point cloud[J]. Urban Mass Transit, 2023, 26(9): 143-149.
[6] 卢建军, 李文海, 燕樟林, 等. 螺栓孔特征点云支持下的地铁盾构隧道环缝识别与环间错台量分析[J]. 测绘通报, 2022(9): 6-11. LU Jianjun, LI Wenhai, YAN Zhanglin, et al. Circumferential seam detection and analytics of segment misplacement between rings of subway shield tunnels based on featured point cloud of bolt holes[J]. Bulletin of Surveying and Mapping, 2022(9): 6-11.
[7] YU A, MEI W. Deep-learning-based longitudinal joint opening detection method for metro shield tunnel[J]. Tunnelling and Underground Space Technology, 2024, 154: 106108.
[8] HOU S K, OU Z G, HUANG Y Q, et al. Pixel-level crack segmentation of tunnel lining segments based on an encoder-decoder network[J]. Frontiers of Structural and Civil Engineering, 2024, 18(5): 681-698.
[9] CHEN C X, SHEN P. Research on crack width measurement based on binocular vision and improved DeeplabV3+[J]. Applied Sciences, 2023, 13(5): 2752.
[10] ZHANG Z C, SHEN Z J, LIU J T, et al. A binocular vision-based crack detection and measurement method incorporating semantic segmentation[J]. Sensors, 2024, 24(1): 3.
[11] 关振长, 陈东, 徐铭泽, 等. 基于双目视觉的管片错台精确测量方法[J]. 清华大学学报(自然科学版), 2025, 65(7): 1359-1367. GUAN Zhenchang, CHEN Dong, XU Mingze, et al. Accurate measurement method for segment dislocation using binocular vision[J]. Journal of Tsinghua University(Science and Technology), 2025, 65(7): 1359-1367.
[12] ZHANG J, CHU W, TU W, et al. Computer vision-based monitoring method for differential settlement of shield tunnels[J]. Journal of Physics: Conference Series, 2023, 2519: 012057.
[13] 江正, 刘辉, 向先波. 基于C/S架构的船舶电站网络化无线监控系统设计[J]. 中国造船, 2015, 56(4): 179-187. JIANG Zheng, LIU Hui, XIANG Xianbo. Wireless network monitoring system for ship power station based on C/S architecture[J]. Shipbuilding of China, 2015, 56(4): 179-187.
[14] 胡欣, 王生辉, 常娅姝, 等. 基于STM32的塔机数据采集和监控系统设计[J]. 仪表技术与传感器, 2024(4): 53-58. HU Xin, WANG Shenghui, CHANG Yashu, et al. Design of data acquisition and monitoring system for tower crane based on STM32[J]. Instrument Technique and Sensor, 2024(4): 53-58.
[15] 熊雪钧, 谭力波, 张俊杰, 等. 基于FPGA的低延迟TCP协议栈实现[J]. 电子测量技术, 2020, 43(11): 43-48. XIONG Xuejun, TAN Libo, ZHANG Junjie, et al. Design and implementation of low latency TCP stack on FPGA[J]. Electronic Measurement Technology, 2020, 43(11): 43-48.
[16] 陈东. 基于双目视觉的盾构隧道管片错台精确测量及软硬件实现[D]. 福州: 福州大学, 2025: 31-54. CHEN Dong. Accurate measurement of shield tunnel segment dislocation based on binocular vision and its software-hardware implementation[D]. Fuzhou: Fuzhou University, 2025: 31-54.
[17] ZHANG Z Y. A flexible new technique for camera calibration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 22(11): 1330-1334.
[18] LI J,WANG P, XIONG P, et al. Practical stereo matching via cascaded recurrent network with adaptive correlation[C] //Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans, USA: IEEE, 2022: 16242-16251.
[19] 陈浩安, 李晖, 黄瑞, 等. 基于树莓派4B的无人机动态追踪平台设计[J]. 电子测量技术, 2024, 47(6): 182-189. CHEN Haoan, LI Hui, HUANG Rui, et al. Design of dynamic tracking platform for unmanned aerial vehicle based on Raspberry Pi 4B[J]. Electronic Measurement Technology, 2024, 47(6): 182-189.
[20] 关振长, 陈东, 谢立夫, 等. 用于工程表观质量检测的便携式双目相机:中国, 202420197345.X[P]. 2024-09-13.
[21] 韦莉. 固体分析仪在聚乳酸3D打印线材热性能与动态热机械性能研究中的应用[J]. 塑料工业, 2024, 52(9): 99-103. WEI Li. Applications of the solid analysis instrument in the researches of thermal properties and dynamic thermomechanical properties of 3D printed polylactic acid filaments[J]. China Plastics Industry, 2024, 52(9): 99-103.
[1] 郭建光,王星,董唱唱,薛永斌,王双庆,赵宏硕,王涵,王文虎. 浆液时效性与管片摩擦作用下管片上浮研究[J]. 隧道与地下工程灾害防治, 2025, 7(2): 73-80.
[2] 郭志国, 李益锌, 周令剑, 张一恒, 叶瑀伋. 公路隧道火灾应急技术研究现状与展望[J]. 隧道与地下工程灾害防治, 0, (): 1-.
[3] 范传刚, 盛子琼, 熊胜, 栾蝶. 降雨与纵向通风作用下隧道火灾烟气蔓延及分层特性试验研究[J]. 隧道与地下工程灾害防治, 0, (): 1-.
[4] 尹洪武, 朱耿德, 朱耿刚, 葛鑫博. 超深地层盐岩单轴压缩损伤演化过程分析[J]. 隧道与地下工程灾害防治, 2021, 3(4): 53-60.
[5] 夏英杰, 孟庆坤, 唐春安, 张永彬, 赵丹晨, 赵振兴. 岩石破裂过程分析方法在隧道工程模拟中的应用[J]. 隧道与地下工程灾害防治, 2021, 3(3): 36-49.
[6] 戎贤, 张晓巍, 孙子正, 张一鸣. 公路隧道智能火灾应急与疏散体系研究[J]. 隧道与地下工程灾害防治, 0, (): 1-7.
[7] 左宇军,万入祯,孙文吉斌,刘镐,林健云,娄义黎. 不同开挖工法对含煤系岩层隧道围岩稳定性影响[J]. 隧道与地下工程灾害防治, 2019, 1(4): 64-74.
[8] 鲜国,石少帅,赵勇,肖广智,喻渝,王俊涛,卜林. 强富水隧道下穿河段突涌水灾害综合防控方法研究与应用[J]. 隧道与地下工程灾害防治, 2019, 1(2): 74-82.
[9] 龚秋明,吴帆,殷丽君. 岩石复合地层滚刀线性切割破岩试验研究[J]. 隧道与地下工程灾害防治, 2019, 1(2): 67-73.
[10] 郭建光, 王星, 董唱唱, 薛永斌, 王双庆, 赵宏硕, 王文虎. 浆液时效性与管片摩擦作用下管片上浮研究[J]. 隧道与地下工程灾害防治, 0, (): 1-13.
[11] 戎贤, 张晓巍, 孙子正, 张一鸣. 公路隧道智能火灾应急与疏散体系结构[J]. 隧道与地下工程灾害防治, 2020, 2(3): 23-29.
[12] 郭洪雨, 田伟, 刘佳. 带平行导洞的公路隧道合理排烟策略[J]. 隧道与地下工程灾害防治, 2021, 3(2): 69-76.
[13] 郭志国,李益锌,周令剑,张一恒,叶瑀伋. 公路隧道火灾应急技术研究现状与展望[J]. 隧道与地下工程灾害防治, 2024, 6(2): 13-24.
[14] 王伟,苗德海,王克金,王春梅,莫阳春,邵鹏程,杨光. 隧道施工救生舱设备研发及工程应用[J]. 隧道与地下工程灾害防治, 2020, 2(1): 75-83.
[15] 范传刚,盛子琼,熊胜,栾蝶. 降雨与纵向通风作用下隧道火灾烟气蔓延及分层特性试验研究[J]. 隧道与地下工程灾害防治, 2024, 6(2): 37-45.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn