Study on tunnel segment uplift under the coupled effect of grout time-dependent properties and segmental friction
GUO Jianguang1, WANG Xing2, DONG Changchang3, XUE Yongbin1, WANG Shuangqing2, ZHAO Hongshuo3, WANG Han4, WANG Wenhu4
1. China Railway Construction Investment Group Co., Ltd., Beijing 100070, China; 2. China Water Resources and Hydropower Fourth Engineering Bureau Co., Ltd., Xining 810007, Qinghai, China; 3. China Water Resources and Hydropower Eleventh Engineering Bureau Co., Ltd., Zhengzhou 450001, Henan, China; 4. School of Qilu Transportation, Shandong University, Jinan 250002, Shandong, China
Abstract: In order to systematically analyze the influence of grout time-dependency on tunnel segment buoyancy, a numerical model considering grout solidification time-dependency and inter-segment-ring friction was established using FLAC3D software. Comparative analysis with field-measured data jointly revealed the dynamic evolution characteristics and influencing mechanisms of segment buoyancy during tunnel excavation. The comparison demonstrated that the model accurately reflected the characteristic where segment buoyancy reached its maximum value near 10 m behind the shield tail and gradually stabilized, with the variation curve divisible into rapid growth, gentle growth, and stabilization phases. Parameter analysis and sensitivity analysis indicated that average grouting pressure most significantly affected cumulative buoyancy. When average grouting pressure increased from 0.3 MPa to 0.6 MPa, buoyancy increased by 42% with the highest sensitivity coefficient. Increasing depth-diameter ratio from 1.0 to 4.0 reduced buoyancy by 35% with secondary sensitivity, while increasing equivalent layer bulk modulus from 1.8 MPa to 3.6 MPa decreased buoyancy reduction to merely 11% with lower sensitivity. The research results provide data support for refined prediction and control of segment buoyancy in tunnel construction.
郭建光,王星,董唱唱,薛永斌,王双庆,赵宏硕,王涵,王文虎. 浆液时效性与管片摩擦作用下管片上浮研究[J]. 隧道与地下工程灾害防治, 2025, 7(2): 73-80.
GUO Jianguang, WANG Xing, DONG Changchang, XUE Yongbin, WANG Shuangqing, ZHAO Hongshuo, WANG Han, WANG Wenhu. Study on tunnel segment uplift under the coupled effect of grout time-dependent properties and segmental friction. Hazard Control in Tunnelling and Underground Engineering, 2025, 7(2): 73-80.
[1] 肖明清, 孙文昊, 韩向阳. 盾构隧道管片上浮问题研究[J]. 岩土力学, 2009, 30(4): 1041-1045. XIAO Mingqing, SUN Wenhao, HAN Xiangyang. Research on upward moving of segments of shield tunnel[J]. Rock and Soil Mechanics, 2009, 30(4): 1041-1045. [2] 侯永茂, 彭加强, 龚晓南, 等. 同步注浆浆液抗浮性能试验研究[J]. 地基处理, 2019, 1(1): 53-56. HOU Yongmao, PENG Jiaqiang, GONG Xiaonan, et al. Experimental study on anti-floating performance of synchronous grout [J]. Journal of Ground Improvement, 2019, 1(1): 53-56. [3] 张连凯. 盾构隧道同步注浆浆液上浮力试验研究[J]. 地基处理, 2020, 2(5): 361-365. ZHANG Liankai. Experimental study on buoyancy of synchronous grouting slurry in shield tunnel[J]. Journal of Ground Improvement, 2020, 2(5): 361-365. [4] 梁禹, 阳军生, 林辉. 大直径盾构隧道施工阶段管片上浮与受力研究[J]. 现代隧道技术, 2016, 53(3): 91-97. LIANG Yu, YANG Junsheng, LIN Hui. On segment floating and relevant mechanical behaviors during large-diameter shield tunnelling[J]. Modern Tunnelling Technology, 2016, 53(3): 91-97. [5] TAO X L, SU Y H, ZHU Q Y, et al. Pasternak model-based tunnel segment uplift model of subway shield tunnel during construction[J]. Advances in Civil Engineering, 2021, 2021(1): 8587602. [6] 叶飞, 朱合华, 丁文其. 基于弹性地基梁的盾构隧道纵向上浮分析[J]. 中国铁道科学, 2008, 29(4): 65-69. YE Fei, ZHU Hehua, DING Wenqi. Longitudinal upward movement analysis of shield tunnel based on elastic foundation beam[J]. China Railway Science, 2008, 29(4): 65-69. [7] 王道远, 朱永全, 何川. 软土盾构隧道施工阶段上浮量预测综述[J]. 铁道标准设计, 2016, 60(1): 92-97. WANG Daoyuan, ZHU Yongquan, HE Chuan. Review on prediction of upward movement of shield tunnel in soft soil during construction [J]. Railway Standard Design, 2016, 60(1): 92-97. [8] 黄旭民, 黄林冲, 梁禹. 施工期同步注浆影响下盾构隧道管片纵向上浮特征分析与应用[J]. 岩土工程学报, 2021, 43(9): 1700-1707. HUANG Xumin, HUANG Linchong, LIANG Yu. Analysis and application of longitudinal uplift characteristics of segments of shield tunnels affected by synchronous grouting during construction period [J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1700-1707. [9] 付艳斌, 梅超, 卞跃威, 等. 考虑注浆填充率的大直径盾构管片上浮解析解与应用[J]. 中国公路学报, 2022, 35(11): 171-179. FU Yanbin, MEI Chao, BIAN Yuewei, et al. Analytical solution and application of large-diameter shield segment uplift considering the filling rate of grouting[J]. China Journal of Highway and Transport, 2022, 35(11): 171-179. [10] 马蕾, 韩玉琪, 倪静, 等. 浅埋大直径盾构隧道施工期衬砌上浮及地表隆起的模型研究[J]. 隧道建设(中英文), 2019, 39(增刊1): 194-201. MA Lei, HAN Yuqi, NI Jing, et al. Modeling of tunnel lining up-lifting and ground surface heave during excavation of large diameter shield tunnel under shallow overburden [J]. Tunnel Construction, 2019, 39(Suppl.1): 194-201. [11] 钟小春, 黄思远, 槐荣国, 等. 基于浆液浮力试验的盾尾管片纵向上浮特征研究[J]. 岩土力学, 2023, 44(6): 1615-1624. ZHONG Xiaochun, HUANG Siyuan, HUAI Rongguo, et al. Longitudinal uplift characteristics of segments of shield tunnels based on buoyancy of grouting [J]. Rock and Soil Mechanics, 2023, 44(6): 1615-1624. [12] 叶俊能, 刘源, 陈仁朋, 等. 盾构隧道管片施工期容许上浮量研究[J]. 岩石力学与工程学报, 2014, 33(增刊2): 4067-4074. YE Junneng, LIU Yuan, CHEN Renpeng, et al. Study of the permissible value of upward floating for segment in shield tunnel construction[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(Suppl.2): 4067-4074. [13] 施有志, 王晨飞, 赵花丽, 等. 海底盾构隧道掘进过程数值模拟研究[J]. 工程地质学报, 2021, 29(6): 1887-1897. SHI Youzhi, WANG Chenfei, ZHAO Huali, et al. Numerical simulation of subsea shield tunneling process[J]. Journal of Engineering Geology, 2021, 29(6): 1887-1897. [14] 石州, 谢雄耀, 曾昆, 等. 考虑过程响应的盾构隧道施工管片变形研究 [J/OL]. 土木与环境工程学报(中英文), 2025-03-06. http://kns.cnki.net/kcms/detail/50.1218.TU.20250304.2047.006.html SHI Zhou, XIE Xiongyao, ZENG Kun, et al. Study of segment deformation in shield tunnel construction considering the process response [J/OL]. Journal of Civil and Environmental Engineering, 2025-03-06. http://kns.cnki.net/kcms/detail/50.1218.TU.20250304.2047.006.html [15] 高一民, 柳献, Gonzalo RAMOS, 等. 盾构隧道环间剪切效应模拟分析-以隧道开孔为例 [J/OL]. 铁道科学与工程学报, 2024-08-30. https://doi.org/10.19713/j.cnki.43-1423/u.T20241128 GAO Yimin, LIU Xian, Gonzalo RAMOSet al. Analysis of shear effects between segments in shield tunnel-a case study of tunnel with local open[J/OL]. Journal of Railway Science and Engineering, 2024-08-30. https://doi.org/10.19713/j.cnki.43-1423/u.T20241128 [16] 傅鹤林, 史越, 陈俐光, 等. 盾构隧道施工期管片上浮机理数值模拟研究[J]. 中外公路, 2019, 39(1): 174-179. FU Helin, SHI Yue, CHEN Liguang, et al. Numerical simulation of segment floating mechanism of shield tunnel during construction period [J]. Journal of China & Foreign Highway, 2019, 39(1): 174-179. [17] 杨春山, 莫海鸿, 魏立新. 盾构隧道环向接头等效刚度修正计算及其影响因素研究[J]. 铁道科学与工程学报, 2017, 14(7): 1497-1504. YANG Chunshan, MO Haihong, WEI Lixin. Correction calculation for circumferential equivalent bolt stiffness of shield tunnel and the analysis of its influencing factors [J]. Journal of Railway Science and Engineering, 2017, 14(7): 1497-1504. [18] 孟祥连, 赵晓彦, 范智浩, 等. 昆明泥炭质土地铁盾构等代层压缩模量试验研究[J]. 工程地质学报, 2017, 25(6): 1617-1623. MENG Xianglian, ZHAO Xiaoyan, FAN Zhihao, et al. Experimental study on compressive modulus of metro shield generation zone in Kunming cumulosols [J]. Journal of Engineering Geology, 2017, 25(6): 1617-1623. [19] 季亚平. 考虑施工过程的盾构隧道地层位移与土压力研究[D]. 南京: 河海大学, 2004. JI Yaping. Study on ground displacement and earth pressure of shield tunnel considering construction process[D]. Nanjing: Hohai University, 2004. [20] 藤田圭一, 祝国荣, 蔺安林. 从基础工程角度看盾构掘进法-地层的沉降与松动[J]. 隧道译丛, 1985, 21(5):49-63. FUJITA Keiichi, ZHU Guorong, LIN Anlin. Shield tunneling method from a foundation engineering perspective: strata subsidence and loosening[J]. Tunnel Translations, 1985, 21(5): 49-63.