Please wait a minute...
 
隧道与地下工程灾害防治  2025, Vol. 7 Issue (2): 73-80    DOI: 10.19952/j.cnki.2096-5052.2025.02.08
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
浆液时效性与管片摩擦作用下管片上浮研究
郭建光1,王星2,董唱唱3,薛永斌1,王双庆2,赵宏硕3,王涵4,王文虎4
1.中电建铁路建设投资集团有限公司, 北京 100070;2.中国水利水电第四工程局有限公司, 青海 西宁 810007;3.中国水利水电第十一工程局有限公司, 河南 郑州 450001;4.山东大学齐鲁交通学院, 山东 济南 250002
Study on tunnel segment uplift under the coupled effect of grout time-dependent properties and segmental friction
GUO Jianguang1, WANG Xing2, DONG Changchang3, XUE Yongbin1, WANG Shuangqing2, ZHAO Hongshuo3, WANG Han4, WANG Wenhu4
1. China Railway Construction Investment Group Co., Ltd., Beijing 100070, China;
2. China Water Resources and Hydropower Fourth Engineering Bureau Co., Ltd., Xining 810007, Qinghai, China;
3. China Water Resources and Hydropower Eleventh Engineering Bureau Co., Ltd., Zhengzhou 450001, Henan, China;
4. School of Qilu Transportation, Shandong University, Jinan 250002, Shandong, China
下载:  PDF (6771KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为系统分析浆液时效性对隧道管片上浮的影响规律,采用FLAC3D数值软件建立考虑浆液凝固时效性、管片环间摩擦的数值模型,与现场实测数据进行对比分析,共同揭示隧道掘进过程中管片上浮的动态演化规律及其影响机制。数值模拟结果与现场实测数据对比表明,模型能够准确反映管片上浮量在盾尾后10 m附近达到最大值并逐渐稳定的特征,其变化曲线可分为快速增长段、平缓增长段和稳定段。参数分析和敏感性分析表明平均注浆压力对累计上浮量影响最为显著,当平均注浆压力由0.3 MPa增至0.6 MPa时上浮量增加42%,敏感性系数最高;深径比由1.0增大至4.0可使上浮量降低35%,敏感性系数次之;而等代层体积模量由1.8 MPa增大至3.6 MPa可使上浮量提升仅减少11%,敏感性系数较低。研究成果为隧道施工中管片上浮的精细化预测与控制提供了数据支撑。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭建光
王星
董唱唱
薛永斌
王双庆
赵宏硕
王涵
王文虎
关键词:  盾构隧道  管片上浮  浆液时效性  数值模拟    
Abstract: In order to systematically analyze the influence of grout time-dependency on tunnel segment buoyancy, a numerical model considering grout solidification time-dependency and inter-segment-ring friction was established using FLAC3D software. Comparative analysis with field-measured data jointly revealed the dynamic evolution characteristics and influencing mechanisms of segment buoyancy during tunnel excavation. The comparison demonstrated that the model accurately reflected the characteristic where segment buoyancy reached its maximum value near 10 m behind the shield tail and gradually stabilized, with the variation curve divisible into rapid growth, gentle growth, and stabilization phases. Parameter analysis and sensitivity analysis indicated that average grouting pressure most significantly affected cumulative buoyancy. When average grouting pressure increased from 0.3 MPa to 0.6 MPa, buoyancy increased by 42% with the highest sensitivity coefficient. Increasing depth-diameter ratio from 1.0 to 4.0 reduced buoyancy by 35% with secondary sensitivity, while increasing equivalent layer bulk modulus from 1.8 MPa to 3.6 MPa decreased buoyancy reduction to merely 11% with lower sensitivity. The research results provide data support for refined prediction and control of segment buoyancy in tunnel construction.
Key words:  shield tunnel    segment uplift    grout time-dependency    numerical simulationReceived: 2025-02-11    Revised: 2025-03-10    Accepted: 2025-04-10    Published: 2025-06-20
发布日期:  2025-06-18     
中图分类号:  U458  
基金资助: 国家自然科学基金资助项目(52278403)
作者简介:  郭建光(1975— ),男,山西晋中人,高级工程师,硕士,主要研究方向为城市轨道项目建设管理. E-mail:983311297@qq.com
引用本文:    
郭建光,王星,董唱唱,薛永斌,王双庆,赵宏硕,王涵,王文虎. 浆液时效性与管片摩擦作用下管片上浮研究[J]. 隧道与地下工程灾害防治, 2025, 7(2): 73-80.
GUO Jianguang, WANG Xing, DONG Changchang, XUE Yongbin, WANG Shuangqing, ZHAO Hongshuo, WANG Han, WANG Wenhu. Study on tunnel segment uplift under the coupled effect of grout time-dependent properties and segmental friction. Hazard Control in Tunnelling and Underground Engineering, 2025, 7(2): 73-80.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2025/V7/I2/73
[1] 肖明清, 孙文昊, 韩向阳. 盾构隧道管片上浮问题研究[J]. 岩土力学, 2009, 30(4): 1041-1045. XIAO Mingqing, SUN Wenhao, HAN Xiangyang. Research on upward moving of segments of shield tunnel[J]. Rock and Soil Mechanics, 2009, 30(4): 1041-1045.
[2] 侯永茂, 彭加强, 龚晓南, 等. 同步注浆浆液抗浮性能试验研究[J]. 地基处理, 2019, 1(1): 53-56. HOU Yongmao, PENG Jiaqiang, GONG Xiaonan, et al. Experimental study on anti-floating performance of synchronous grout [J]. Journal of Ground Improvement, 2019, 1(1): 53-56.
[3] 张连凯. 盾构隧道同步注浆浆液上浮力试验研究[J]. 地基处理, 2020, 2(5): 361-365. ZHANG Liankai. Experimental study on buoyancy of synchronous grouting slurry in shield tunnel[J]. Journal of Ground Improvement, 2020, 2(5): 361-365.
[4] 梁禹, 阳军生, 林辉. 大直径盾构隧道施工阶段管片上浮与受力研究[J]. 现代隧道技术, 2016, 53(3): 91-97. LIANG Yu, YANG Junsheng, LIN Hui. On segment floating and relevant mechanical behaviors during large-diameter shield tunnelling[J]. Modern Tunnelling Technology, 2016, 53(3): 91-97.
[5] TAO X L, SU Y H, ZHU Q Y, et al. Pasternak model-based tunnel segment uplift model of subway shield tunnel during construction[J]. Advances in Civil Engineering, 2021, 2021(1): 8587602.
[6] 叶飞, 朱合华, 丁文其. 基于弹性地基梁的盾构隧道纵向上浮分析[J]. 中国铁道科学, 2008, 29(4): 65-69. YE Fei, ZHU Hehua, DING Wenqi. Longitudinal upward movement analysis of shield tunnel based on elastic foundation beam[J]. China Railway Science, 2008, 29(4): 65-69.
[7] 王道远, 朱永全, 何川. 软土盾构隧道施工阶段上浮量预测综述[J]. 铁道标准设计, 2016, 60(1): 92-97. WANG Daoyuan, ZHU Yongquan, HE Chuan. Review on prediction of upward movement of shield tunnel in soft soil during construction [J]. Railway Standard Design, 2016, 60(1): 92-97.
[8] 黄旭民, 黄林冲, 梁禹. 施工期同步注浆影响下盾构隧道管片纵向上浮特征分析与应用[J]. 岩土工程学报, 2021, 43(9): 1700-1707. HUANG Xumin, HUANG Linchong, LIANG Yu. Analysis and application of longitudinal uplift characteristics of segments of shield tunnels affected by synchronous grouting during construction period [J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1700-1707.
[9] 付艳斌, 梅超, 卞跃威, 等. 考虑注浆填充率的大直径盾构管片上浮解析解与应用[J]. 中国公路学报, 2022, 35(11): 171-179. FU Yanbin, MEI Chao, BIAN Yuewei, et al. Analytical solution and application of large-diameter shield segment uplift considering the filling rate of grouting[J]. China Journal of Highway and Transport, 2022, 35(11): 171-179.
[10] 马蕾, 韩玉琪, 倪静, 等. 浅埋大直径盾构隧道施工期衬砌上浮及地表隆起的模型研究[J]. 隧道建设(中英文), 2019, 39(增刊1): 194-201. MA Lei, HAN Yuqi, NI Jing, et al. Modeling of tunnel lining up-lifting and ground surface heave during excavation of large diameter shield tunnel under shallow overburden [J]. Tunnel Construction, 2019, 39(Suppl.1): 194-201.
[11] 钟小春, 黄思远, 槐荣国, 等. 基于浆液浮力试验的盾尾管片纵向上浮特征研究[J]. 岩土力学, 2023, 44(6): 1615-1624. ZHONG Xiaochun, HUANG Siyuan, HUAI Rongguo, et al. Longitudinal uplift characteristics of segments of shield tunnels based on buoyancy of grouting [J]. Rock and Soil Mechanics, 2023, 44(6): 1615-1624.
[12] 叶俊能, 刘源, 陈仁朋, 等. 盾构隧道管片施工期容许上浮量研究[J]. 岩石力学与工程学报, 2014, 33(增刊2): 4067-4074. YE Junneng, LIU Yuan, CHEN Renpeng, et al. Study of the permissible value of upward floating for segment in shield tunnel construction[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(Suppl.2): 4067-4074.
[13] 施有志, 王晨飞, 赵花丽, 等. 海底盾构隧道掘进过程数值模拟研究[J]. 工程地质学报, 2021, 29(6): 1887-1897. SHI Youzhi, WANG Chenfei, ZHAO Huali, et al. Numerical simulation of subsea shield tunneling process[J]. Journal of Engineering Geology, 2021, 29(6): 1887-1897.
[14] 石州, 谢雄耀, 曾昆, 等. 考虑过程响应的盾构隧道施工管片变形研究 [J/OL]. 土木与环境工程学报(中英文), 2025-03-06. http://kns.cnki.net/kcms/detail/50.1218.TU.20250304.2047.006.html SHI Zhou, XIE Xiongyao, ZENG Kun, et al. Study of segment deformation in shield tunnel construction considering the process response [J/OL]. Journal of Civil and Environmental Engineering, 2025-03-06. http://kns.cnki.net/kcms/detail/50.1218.TU.20250304.2047.006.html
[15] 高一民, 柳献, Gonzalo RAMOS, 等. 盾构隧道环间剪切效应模拟分析-以隧道开孔为例 [J/OL]. 铁道科学与工程学报, 2024-08-30. https://doi.org/10.19713/j.cnki.43-1423/u.T20241128 GAO Yimin, LIU Xian, Gonzalo RAMOSet al. Analysis of shear effects between segments in shield tunnel-a case study of tunnel with local open[J/OL]. Journal of Railway Science and Engineering, 2024-08-30. https://doi.org/10.19713/j.cnki.43-1423/u.T20241128
[16] 傅鹤林, 史越, 陈俐光, 等. 盾构隧道施工期管片上浮机理数值模拟研究[J]. 中外公路, 2019, 39(1): 174-179. FU Helin, SHI Yue, CHEN Liguang, et al. Numerical simulation of segment floating mechanism of shield tunnel during construction period [J]. Journal of China & Foreign Highway, 2019, 39(1): 174-179.
[17] 杨春山, 莫海鸿, 魏立新. 盾构隧道环向接头等效刚度修正计算及其影响因素研究[J]. 铁道科学与工程学报, 2017, 14(7): 1497-1504. YANG Chunshan, MO Haihong, WEI Lixin. Correction calculation for circumferential equivalent bolt stiffness of shield tunnel and the analysis of its influencing factors [J]. Journal of Railway Science and Engineering, 2017, 14(7): 1497-1504.
[18] 孟祥连, 赵晓彦, 范智浩, 等. 昆明泥炭质土地铁盾构等代层压缩模量试验研究[J]. 工程地质学报, 2017, 25(6): 1617-1623. MENG Xianglian, ZHAO Xiaoyan, FAN Zhihao, et al. Experimental study on compressive modulus of metro shield generation zone in Kunming cumulosols [J]. Journal of Engineering Geology, 2017, 25(6): 1617-1623.
[19] 季亚平. 考虑施工过程的盾构隧道地层位移与土压力研究[D]. 南京: 河海大学, 2004. JI Yaping. Study on ground displacement and earth pressure of shield tunnel considering construction process[D]. Nanjing: Hohai University, 2004.
[20] 藤田圭一, 祝国荣, 蔺安林. 从基础工程角度看盾构掘进法-地层的沉降与松动[J]. 隧道译丛, 1985, 21(5):49-63. FUJITA Keiichi, ZHU Guorong, LIN Anlin. Shield tunneling method from a foundation engineering perspective: strata subsidence and loosening[J]. Tunnel Translations, 1985, 21(5): 49-63.
[1] 丁建奇, 王陈成, 朱向闪, 张翔, 傅刚, 徐敬民. 大直径隧道施工对临近建筑的作用机制[J]. 隧道与地下工程灾害防治, 2025, 7(1): 22-34.
[2] 李璋, 白森, 郑建国, 于永堂, 朱才辉. 基坑开挖对西安黄土地层中既有盾构隧道围岩压力及变形影响分析[J]. 隧道与地下工程灾害防治, 2025, 7(1): 35-47.
[3] 苟晓军, 赵金泉, 季玮, 花晓鸣, 范占锋. 隧道不良地质构造雷达特征数值模拟[J]. 隧道与地下工程灾害防治, 2025, 7(1): 68-82.
[4] 赵旭明, 雷文君, 蔡明庆, 邰传民, 张林华. 观光隧道烟气流动特性研究[J]. 隧道与地下工程灾害防治, 2025, 7(1): 90-98.
[5] 王圣涛, 陈鹏涛, 刘爱武, 孙文昊, 张俊儒. 特大跨连续变断面隧道双导洞超前-中柱反向扩挖的施工力学行为[J]. 隧道与地下工程灾害防治, 2024, 6(4): 1-11.
[6] 孙超, 张光伟, 答武强, 余祖峰. 临山条件下大直径盾构隧道抗浮控制技术[J]. 隧道与地下工程灾害防治, 2024, 6(4): 27-37.
[7] 李启弟, 梁庆国, 周仁, 杨家伟, 蔡遵乐. 甘青隧道初始地应力场分析及岩爆预测[J]. 隧道与地下工程灾害防治, 2024, 6(4): 50-60.
[8] 赵泽乾, 朱旻, 包小华, 杨春山, 陈湘生. 下穿码头危化品堆场的超大直径盾构隧道抗爆性能评估方法[J]. 隧道与地下工程灾害防治, 2024, 6(4): 61-71.
[9] 杨立,夏增选,娄文杰,刘杉,李奉庭,武科. 山区深埋公路隧道穿越断层破碎带施工稳定性[J]. 隧道与地下工程灾害防治, 2024, 6(3): 32-42.
[10] 田瑞端,莫冠旺,李响. 超大断面扁平结构隧道矿山法超欠挖优化控制研究[J]. 隧道与地下工程灾害防治, 2024, 6(2): 84-98.
[11] 刘向阳,罗兵兵,吴静,张学富,黄耀明,李林杰. 高地温施工隧道冰块与通风组合降温效果对比研究[J]. 隧道与地下工程灾害防治, 2024, 6(2): 66-75.
[12] 闫治国, 王紫锐, 沈奕, 刘康. 碳氢曲线下大直径盾构隧道结构热力特性[J]. 隧道与地下工程灾害防治, 2024, 6(2): 25-36.
[13] 王宏超,胡军,周永强,付晓东. 二次衬砌施作时机对盾构隧道纵向力学性能的影响分析[J]. 隧道与地下工程灾害防治, 2024, 6(2): 99-112.
[14] 彭益, 张文, 王汉勋, 张彬, 孙哲. 某海岛地下水封油库渗流场数值模拟[J]. 隧道与地下工程灾害防治, 2024, 6(1): 94-104.
[15] 孙齐昊, 舒计城, 范森, 柳献. 降水与回灌水抢险作用机制的试验研究[J]. 隧道与地下工程灾害防治, 2023, 5(4): 33-46.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn