Please wait a minute...
 
隧道与地下工程灾害防治  2021, Vol. 3 Issue (2): 77-85    DOI: 10.19952/j.cnki.2096-5052.2021.02.09
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
长距离小间距管廊施工对既有区间盾构隧道的影响
高阳1,董威1,曹甲甲2,骆建军2
1. 中国水利水电第七工程局有限公司, 四川 成都 610081;2. 北京交通大学城市地下工程教育部重点实验室, 北京 100044)
The influence of long-distance and small-spacing pipe gallery construction on existing section shield tunnels
GAO Yang1, DONG Wei1, CAO Jiajia2, LUO Jianjun2
1.Sinohydro Bureau 7 Co., Ltd., Chengdu 610081, Sichuan, China;
2.Key Laboratory of Urban Underground Engineering of Ministry of Education, Beijing Jiaotong University, Beijing 100044, China
下载:  PDF (6452KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为研究长距离小间距管廊基坑开挖对盾构隧道的变形影响,依托深圳地铁12号线管廊共建工程,利用数值模拟软件模拟综合管廊开挖,研究管廊开挖宽度为10.5 m,开挖深度为6.5 m的工况下,不同管廊开挖长度对盾构隧道的影响。研究不同的分仓开挖步距、钻孔灌注桩嵌固深度、注浆层厚度对隧道变形的影响。结果表明:综合管廊开挖引起下方隧道的变形随着开挖长度的增加而增大,当开挖长度大于3倍开挖宽度时,可以忽略开挖长度对隧道的影响;分仓开挖步距越小,管廊开挖完成后隧道变形越小;存在最优注浆层厚度和灌注桩嵌固深度,超过最优值时,隧道变形基本不受影响。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
高阳
董威
曹甲甲
骆建军
关键词:  长距离小间距  数值模拟  管廊开挖  隧道变形  嵌固深度  注浆层厚度    
Abstract: In order to study the influence of long-distance and small-spacing pipe gallery excavation on the deformation of shield tunnels, relying on the common construction project of Shenzhen Metro Line 12 pipe gallery, numerical simulation software was used to simulate the comprehensive pipe gallery excavation to study the influence of different excavation length of pipe gallery on shield tunnel under the working condition of excavation width of 10.5 m and the excavation depth of 6.5 m. The influence of different excavation steps, embedded depth of bored piles and thickness of grouting layer on tunnel deformation were studied to provide technical guidance for the subsequent construction of the integrated pipe gallery. The results showed that: the deformation of the tunnel below the excavation of the comprehensive pipe gallery increased with the increase of the excavation length, when the excavation length was 3 times greater than the excavation width, the influence of the excavation length on the tunnel could be ignored; the smaller the step of the bunker excavation was, the smaller the tunnel deformation after the completion of the excavation of the pipe gallery; there was an optimal thickness of the grouting layer and grouting pile embedment depth, beyond the optimal value, the tunnel deformation was basically unaffected by it.
Key words:  long-distance and small-spacing    numerical simulation    pipe gallery excavation    tunnel deformation    embedded depth    thickness of grouting layer
收稿日期:  2021-03-31      修回日期:  2021-06-07      发布日期:  2021-06-20     
中图分类号:  TV551.4  
作者简介:  高阳(1978— ),男,黑龙江虎林人,工程师,主要研究方向为铁路和地铁工程建设施工.E-mail:46952297@qq.com
引用本文:    
高阳, 董威, 曹甲甲, 骆建军. 长距离小间距管廊施工对既有区间盾构隧道的影响[J]. 隧道与地下工程灾害防治, 2021, 3(2): 77-85.
GAO Yang, DONG Wei, CAO Jiajia, LUO Jianjun. The influence of long-distance and small-spacing pipe gallery construction on existing section shield tunnels. Hazard Control in Tunnelling and Underground Engineering, 2021, 3(2): 77-85.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2021/V3/I2/77
[1] ZHANG Zhiguo, HUANG Maosong, WANG Weidong. Evaluation of deformation response for adjacent tunnels due to soil unloading in excavation engineering[J].Tunnelling and Underground Space Technology, 2013, 38: 244-253.
[2] WEI Gang, HU Lingwei, CHEN Kailei.Numerical simulation of effect of foundation pit excavation on underlain shield tunnel[J]. Applied Mechanics and Materials, 2014(580/581/582/583):1001-1007.
[3] SHARMA J S, HEFNY A M, ZHAO J, et al. Effect of large excavation on deformation of adjacent MRT tunnels[J]. Tunnelling and Underground Space Technology, 2001, 16(2): 93-98.
[4] 张海霞,段苒,李名淦.既有盾构地铁区间上方新建管廊基坑的优化设计研究[J]. 特种结构, 2021,38(1):1-5. ZHANG Haixia, DUAN Ran, LI Minggan. Optimization design of an open excavation utility tunnel above-crossing existing shield tunnel[J]. Special Structures, 2021, 38(1):1-5.
[5] 田帅. 复杂环境下基坑上跨运营地铁隧道的保护方案研究[J]. 隧道建设(中英文), 2020,40(增刊2): 196-203. TIAN Shuai. Protection scheme for running metro tunnels under disturbance of upper foundation pit in complex environment[J]. Tunnel Construction, 2020, 40(Suppl.2):196-203.
[6] 罗鑫,王冰洁,尹燕良,等.基坑开挖影响下下卧盾构隧道变形及控制措施研究[J].安全与环境工程,2021,28(2):86-94. LUO Xin, WANG Bingjie, YIN Yanliang, et al. Deformation and control measures of the underlying shield tunnel under the influence of foundation pit excavation[J].Safety and Environmental Engineering, 2021, 28(2):86-94.
[7] 白洋. 基坑开挖施工对邻近地铁隧道结构的影响研究[J].工程建设与设计,2021(5):30-32. BAI Yang. Research on the influence of foundation pit excavation construction on the adjacent subway tunnel structure[J]. Construction & Design for Engineering, 2021(5): 30-32.
[8] 段忠辉.既有地铁区间隧道上方深大基坑开挖安全影响分析[J]. 建筑结构,2020,50(增刊2):747-752. DUAN Zhonghui. Study on safety impact of excavation for deep and large foundation pit above existing subway tunnel[J]. Building Structure, 2020, 50(Suppl.2):747-752.
[9] 李泽基,黄旭.基坑开挖对既有地铁区间隧道的影响性分析[J].广东公路交通,2021,47(1):49-52. LI Zeji, HUANG Xu. Analysis on influence of foundation pit excavation on existing subway interval tunnels [J]. Guangdong Highway Communications, 2021, 47(1):49-52.
[10] 游晓寒.基坑开挖对周边既有地铁结构影响的安全评估研究[J].工程技术研究,2021,6(3):184-185.
[11] 王莉,姜世超.城市综合管廊上穿既有地铁施工方案研究[J].地下空间与工程学报,2019,15(增刊2):717-723. WANG Li, JIANG Shichao. Research on the construction scheme of utility tunnel above-crossing existing subway[J].Chinese Journal of Underground Space and Engineering, 2019, 15(Suppl.2):717-723.
[12] 胡平.综合管廊近距离上穿南水北调干渠施工关键技术研究[J].水利与建筑工程学报,2020,18(4):160-164. HU Ping. Key construction technology of utility tunnel crossing main canal of the south-to-north water diversion project[J].Journal of Water Resources and Architectural Engineering, 2020, 18(4):160-164.
[13] 张晓晖.浅谈基坑开挖对下方既有地铁隧道变形的影响及其控制措施[J].中国标准化,2018(12):100-102.
[14] 夏梦然.深基坑基底注浆加固效果数值模拟分析[J].土木与环境工程学报(中英文),2020,42(1):64-69. XIA Mengran. Numerical simulation analysis of jet grouting effect of deep excavation bottom[J].Journal of Civil and Environmental Engineering, 2020, 42(1):64-69.
[15] 孟小伟.地铁深基坑开挖对下部既有公路隧道的影响分析[J].铁道标准设计,2018,62(4):136-140. MENG Xiaowei. Analysis of influence of deep foundation pit excavation on existing highway tunnel[J].Railway Standard Design, 2018, 62(4):136-140.
[16] 杨友彬,裴利华,林东.综合管廊近接地铁线施工对既有隧道的影响研究[J].地下空间与工程学报,2019,15(增刊1):188-194. YANG Youbin, PEI Lihua, LIN Dong. Study on the influence of adjacent construction of integrated pipe gallery foundation pits on existing subway tunnels[J].Chinese Journal of Underground Space and Engineering, 2019, 15(Suppl.1):188-194.
[17] 邓昌霞.紧邻铁路深基坑钻孔桩支护嵌入深度研究[J].铁道勘察,2020,46(5):67-71. DENG Changxia.Study on embedded depth of bored pile support in deep foundation pit adjacent to railway[J].Railway Investigation and Surveying, 2020, 46(5):67-71.
[18] 王永伟.基坑开挖对下方地铁隧道影响数值分析[J].铁道工程学报,2018,35(2):74-78. WANG Yongwei. Numerical analysis of effect on the existing subway tunnel due to excavation unloading[J].Journal of Railway Engineering Society, 2018, 35(2):74-78.
[19] 郝维钫.基坑开挖引起下方既有地铁回弹变形的数值模拟分析[J].城市道桥与防洪,2019(8):270-273. HAO Weifang. Numerical simulation analysis on rebound deformation of existing metro caused by excavation of foundation pit[J]. Urban Roads Bridges & Flood Control, 2019(8):270-273.
[20] 马静.建筑基坑施工全过程对下方盾构隧道变形影响研究[J].防灾科技学院学报,2018,20(4):9-15. MA Jing.Research on influence of foundation pit construction on deformation of the lower shield tunnel[J]. Journal of Institute of Disaster Prevention, 2018, 20(4):9-15.
[21] 肖飞,喻青儒,应金星.基坑开挖引起的下方地铁隧道管片刚度加强抗浮技术研究[J].中国水运(下半月),2018,18(5):215-216.
[22] 谢素云,吴佩兰,钟昌龙.基坑开挖对下卧隧道影响的数值模拟分析[J].绿色科技,2019(23):107-108.
[23] 中华人民共和国住房和城乡建设部.城市轨道交通工程监测技术规范:GB 50911—2013[S].北京:中国建筑工业出版社,2014.
[24] 谢晓冬, 李梓焜, 陈锐浩, 等. 基坑开挖对邻近建筑及既有地铁的影响分析[J]. 路基工程, 2020(2): 175-179. XIE Xiaodong, LI Zikun, CHEN Ruihao, et al. Analysis on the influence of foundation pit excavation on adjacent buildings and existing metro[J].Subgrade Engineering, 2020(2): 175-179.
[25] 深圳市住房和建设局.深圳市基坑支护技术规范:SJG05—2011[S]. 北京:中国建筑工业出版社,2011.
[26] 汪彬彬. 基坑开挖对下方盾构隧道变形的影响[D]. 广州: 华南理工大学, 2010. WANG Binbin. Underlying shield tunnel deformation effected by pit excavation[D]. Guangzhou: South China University of Technology.
[1] 孙港, 王军祥, 孟祥竹, 郭连军, 孙杰. 基于近场动力学理论的岩石双孔爆破动态断裂行为数值模拟[J]. 隧道与地下工程灾害防治, 2023, 5(2): 42-58.
[2] 赵兴东, 窦翔, 李勇, 王立君. 基于Ventsim的地下水封洞库建造期通风方式优选[J]. 隧道与地下工程灾害防治, 2023, 5(1): 8-17.
[3] 黄兴, 张炜, 殷建钢, 施皓, 张晓磊. 填埋场扩建后下穿隧道结构的安全性[J]. 隧道与地下工程灾害防治, 2023, 5(1): 55-63.
[4] 党晓宇, 马劲松. 基于桩板组合结构等代仰拱的公路隧道加固方案[J]. 隧道与地下工程灾害防治, 2023, 5(1): 90-96.
[5] 关振长, 周宇轩, 吕春波, 吕荔炫. 空气间隔装药周边眼爆破精细化数值模拟[J]. 隧道与地下工程灾害防治, 2022, 4(4): 11-19.
[6] 黄昕, 谷冠思, 张子新, 李昀. 考虑渗流的泥水平衡盾构隧道稳定性数值模拟[J]. 隧道与地下工程灾害防治, 2022, 4(2): 28-38.
[7] 李相兵, 梁波, 鲁思源. 考虑多因素影响的双侧壁导坑法施工参数研究[J]. 隧道与地下工程灾害防治, 2022, 4(2): 39-48.
[8] 石宗涛. 济南黄河隧道泥水盾构开挖面稳定性分析[J]. 隧道与地下工程灾害防治, 2022, 4(1): 71-77.
[9] 李钊, 梁庆国, 孙文, 曹小平. 隧道台阶法施工上台阶长度对隧道变形的影响[J]. 隧道与地下工程灾害防治, 2022, 4(1): 55-62.
[10] 曹成威, 石钰锋, 徐长节, 侯世磊, 龚宏华, 纪松岩. 某明挖深基坑地下连续墙非对称配筋优化设计[J]. 隧道与地下工程灾害防治, 2022, 4(1): 63-70.
[11] 房倩, 杜建明, 王赶, 杨晓旭. 模型边界对圆形隧道开挖引起地表沉降的影响分析[J]. 隧道与地下工程灾害防治, 2022, 4(1): 10-17.
[12] 夏英杰, 孟庆坤, 唐春安, 张永彬, 赵丹晨, 赵振兴. 岩石破裂过程分析方法在隧道工程模拟中的应用[J]. 隧道与地下工程灾害防治, 2021, 3(3): 36-49.
[13] 黄笑, 肖培伟, 董林鹭, 杨兴国, 徐奴文. 高地应力地下洞室群开挖过程岩体力学响应及破坏机制[J]. 隧道与地下工程灾害防治, 2021, 3(3): 85-93.
[14] 张鸿勇, 张艳杰, 刘春, 施斌, 曹政. 基于离散元孔隙密度流法的地铁隧道收敛变形注浆整治分析[J]. 隧道与地下工程灾害防治, 2021, 3(3): 100-110.
[15] 赵高峰,徐志超,郝益民,扈晓冬,邓稀肥. 基于4D-LSM的隧道围岩爆破振动和损伤判定研究[J]. 隧道与地下工程灾害防治, 2021, 3(3): 11-19.
[1] QIAN Qihu. Scientific use of the urban underground space to construction the harmonious livable and beautiful city[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 1 -7 .
[2] DENG Mingjiang, LIU Bin. Challenges, countermeasures and development direction of geological forward-prospecting for TBM cluster tunneling in super-long tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 8 -19 .
[3] DING Xiuli, ZHANG Yuting, ZHANG Chuanjian, YAN Tianyou, HUANG Shuling. Review on countermeasures and their adaptability evaluation to tunnels crossing active faults[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 20 -35 .
[4] JIAO Yuyong, ZHANG Weishe, OU Guangzhao, ZOU Junpeng, CHEN Guanghui. Review of the evolution and mitigation of the water-inrush disaster in drilling-and-blasting excavated deep-buried tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 36 -46 .
[5] ZHANG Qingsong, ZHANG Lianzhen, LI Peng, FENG Xiao. New progress in grouting reinforcement theory of water-rich soft stratum in underground engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 47 -57 .
[6] XIA Kaiwen, XU Ying, CHEN Rong. Dynamic tests of rocks subjected to simulated deep underground environments[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 58 -75 .
[7] HONG Kairong. Study on rock breaking and wear of TBM hob in high-strength high-abrasion stratum[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 76 -85 .
[8] TAN Zhongsheng. Application experimental study of high-strength lattice girders with heat treatment in tunnel engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 86 -92 .
[9] CHEN Jianxun, LUO Yanbin. The stability of structure and its control technology for lager-span loess tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 93 -101 .
[10] JING Hongwen, YU Liyuan, SU Haijian, GU Jincai, YIN Qian. Development and application of catastrophic experiment system for water inrush in surrounding rock of deep tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 102 -110 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn