Optimal design of asymmetrical reinforcement for diaphragm wall in a deep foundation pit
CAO Chengwei1, SHI Yufeng1*, XU Changjie1, HOU Shilei2, GONG Honghua3, JI Songyan4
1. Jiangxi Key Laboratory of Geotechnical Infrastructure Safety and Control, East China Jiaotong University, Nanchang 330013, Jiangxi, China;
2. China Railway 14th Bureau Group Co., Ltd., Jinan 250101, Shandong, China;
3. Jiangxi Local Railway Development Co., Ltd., Nanchang 330001, Jiangxi, China;
4. China Railway Construction Bridge Engineering Bureau Group 1st Engineering Co., Ltd., Dalian 116033, Liaoning, China
Abstract: Relying on the open excavation subway foundation pit project of Aixihu in Nanchang, the excavation of the foundation pit was numerically simulated by ABAQUS software. The reliability and applicability of the numerical model were verified by comparing the numerical calculation and field monitoring results of the horizontal displacement of the diaphragm wall, supported axial force, surface settlement. The bending moment variation law of diaphragm wall during excavation was analyzed. The research showed that there was a significant difference in the bending moment between the earth facing side and the excavation side of the diaphragm wall, the excavation side was tensioned as a whole and the earth facing side was compressed as a whole. The maximum bending moment of the excavation side was 2.3 times than that of the earth facing side. In the original design scheme, the main reinforcement on both sides of the diaphragm wall was symmetrically reinforced, and there was a large optimization space in the design scheme; the effect of crack control was not good only by increasing the amount of reinforcement. Under the condition of constant excavation depth and internal support spacing, after the asymmetric reinforcement optimization of the existing design, the reinforcement amount on the earth facing side and excavation side was reduced by 38.3% and 11.4% respectively, and the load sharing characteristics of the structure were more reasonable, which could greatly reduce the use of reinforcement, so as to reduce the project investment and construction scale.
曹成威, 石钰锋, 徐长节, 侯世磊, 龚宏华, 纪松岩. 某明挖深基坑地下连续墙非对称配筋优化设计[J]. 隧道与地下工程灾害防治, 2022, 4(1): 63-70.
CAO Chengwei, SHI Yufeng, XU Changjie, HOU Shilei, GONG Honghua, JI Songyan. Optimal design of asymmetrical reinforcement for diaphragm wall in a deep foundation pit. Hazard Control in Tunnelling and Underground Engineering, 2022, 4(1): 63-70.
[1] 杨毅秋,周慧超,杨贵生,等. 装配式地下连续墙设计施工技术研究[J]. 铁道工程学报, 2020, 37(2): 91-97. YANG Yiqiu, ZHOU Huichao, YANG Guisheng, et al. Research on the design and construction technique of prefabricated diaphragm walls[J]. Journal of Railway Engineering, 2020, 37(2): 91-97. [2] 陈先智,徐代明,徐赞. 聚合物泥浆在超深地下连续墙施工中的应用[J]. 都市快轨交通, 2019, 32(6): 86-91. CHEN Xianzhi, XU Daiming, XU Zan. Application of polymer slurry in construction of ultra-deep underground diaphragm wall[J]. Urban Rapid Rail Transit, 2019, 32(6): 86-91. [3] 魏纲,黄时雨,蒋丞武,等. 上软下硬地层盾构工作井开挖受力与变形监测分析[J]. 隧道与地下工程灾害防治, 2020, 2(4): 29-36. WEI Gang, HUANG Shiyu, JIANG Chengwu, et al. Monitoring and analysis of stress and deformation of shield working well excavation in upper soft and lower hard soil layer[J]. Hazard Control in Tunnelling and Underground Engineering, 2020, 2(4): 29-36. [4] BRIAUD J L, KIM N K. Beam-column method for tieback walls[J].Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124(1): 67-79. [5] 吴瑞拓,顾晓强,高广运,等. 基于HSS模型的上海地铁深基坑开挖变形分析[J]. 建筑科学与工程学报, 2021, 38(6): 64-70. WU Ruituo, GU Xiaoqiang, GAO Guangyun, et al. Analysis of deep excavation deformation of Shanghai metro station using HSS model[J]. Journal of Architecture and Civil Engineering, 2021, 38(6): 64-70. [6] 刘永超,石长城,杨贵生,等. 装配式地连墙原型试验及受力变形特性研究[J]. 铁道工程学报, 2021, 38(8): 85-90. LIU Yongchao, SHI Changcheng, YANG Guisheng, et al. The in situ test and study of deformation characteristics of prefabricated diaphragm walls[J]. Journal of Railway Engineering Society, 2021, 38(8): 85-90. [7] 蒙国往,农忠建,吴波,等. 地铁车站深基坑开挖变形及数值模拟分析[J]. 中国安全生产科学技术, 2020, 16(7): 145-151. MENG Guowang, NONG Zhongjian, WU Bo, et al. Excavation deformation and numerical simulation analysis of deep foundation pit in subway station[J]. Journal of Safety Science and Technology, 2020, 16(7): 145-151. [8] 高亿文,李明广,陈锦剑. 超载影响下围护结构非对称基坑的受力及变形特性分析[J]. 上海交通大学学报, 2020, 54(6): 643-651. GAO Yiwen, LI Mingguang, CHEN Jinjian. Stress and deformation performance of deep excavation with asymmetrical retaining structures in adjacent surcharge[J]. Journal of Shanghai Jiao Tong University, 2020, 54(6): 643-651. [9] 孙武斌. 地铁车站偏压基坑围护结构变形影响因素研究[J]. 重庆交通大学学报(自然科学版), 2020, 39(4): 86-91. SUN Wubin. Influence factors of deformation of enclosure structure of biasing foundation[J]. Journal of Chongqing Jiaotong University(Natural Sciences), 2020, 39(4): 86-91. [10] 姜燕,杨光华,乔有梁,等. 某大型深基坑的优化设计研究[J]. 岩土工程学报, 2012, 34(增刊1): 335-341. JIANG Yan, YANG Guanghua, QIAO Youliang, et al. Optimal design of a large deep excavation[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(Suppl.1): 335-341. [11] 汪鹏程,文杰,邵长征,等. 基于数值分析的深基坑围护结构优化设计[J]. 合肥工业大学学报(自然科学版), 2016, 39(9): 1248-1253. WANG Pengcheng, WEN Jie, SHAO Changzheng, et al. Optimization design of retaining structure of deep excavation based on numerical analysis[J]. Journal of Hefei University of Technology(Natural Science), 2016, 39(9): 1248-1253. [12] 章润红,刘汉龙,仉文岗. 深基坑支护开挖对临近地铁隧道结构的影响分析研究[J]. 防灾减灾工程学报, 2018, 38(5): 857-866. ZHANG Runhong, LIU Hanlong, ZHANG Wengang. Numerical investigation on tunnel responses induced by adjacent deep braced pit excavations[J]. Journal of Disaster Prevention and Mitigation Engineering, 2018, 38(5): 857-866. [13] 刘新荣,王林枫,陈峰,等. 内撑式地连墙变形特征及其参数优化研究[J]. 地下空间与工程学报, 2021, 17(3): 727-738. LIU Xinrong, WANG Linfeng, CHEN Feng, et al. Research on deformation characteristics and parameter optimization of diaphragm wall with interior bracing structure[J]. Chinese Journal of Underground Space and Engineering, 2021, 17(3): 727-738. [14] 石钰锋, 阳军生, 白伟, 等. 紧邻铁路偏压基坑围护结构变形与内力测试分析[J]. 岩石力学与工程学报, 2011, 30(4): 826-833. SHI Yufeng, YANG Junsheng, BAI Wei, et al. Analysis of field testing for deformation and internal force of unsymmetrical loaded foundation pits(pit's)enclosure structure close to railway[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(4): 826-833. [15] 吴小将, 刘国彬, 卢礼顺, 等. 地铁车站地下连续墙裂缝控制标准的优化探讨[J]. 岩石力学与工程学报, 2005, 24(增刊2): 5395-5399. WU Xiaojiang, LIU Guobin, LU Lishun, et al. Discussion on optimization of allowable crack width for diaphragm wall of metro station[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(Suppl.2): 5395-5399. [16] 王建伟, 薛建荣. 大偏心受压柱对称与非对称配筋的钢筋用量对比[J]. 河南科技大学学报(自然科学版), 2006(5): 58-60. WANG Jianwei, XUE Jianrong. The comparative analysis of the amount of the reinforcing bar between the symmetrical and unsymmetrical disposed reinforcing bar of the great eccentric pressed column[J]. Journal of Henan University of Science and Technology(Natural Science), 2006(5): 58-60. [17] 彭鹏. 深基坑支护方案优化设计及有限元分析[D]. 大连: 大连理工大学, 2016. PENG Peng. The optimization design and finite element analysis of deep foundation pit support scheme[D]. Dalian: Dalian University of Technology, 2016. [18] 中华人民共和国住房和城乡建设部. 混凝土结构设计规范: GB 50010—2010[S]. 北京: 中国建筑工业出版社, 2011. [19] 中国建筑科学研究院. 建筑基坑支护技术规程: JGJ 120—2012[S]. 北京: 中国建筑工业出版社, 2012.