Prediction of shield tunnelling induced ground movements: the state-of-the-art
ZHAO Chenyang1,2,3,4, LUO Maomao1, QIU Jingyi1, NI Pengpeng1,2,3,4*, ZHAO Fengfeng5
1. School of Civil Engineering, Sun Yat-sen University, Zhuhai 519000, Guangdong, China; 2. Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai), Zhuhai 519000, Guangdong, China; 3. Guangdong Underground Space Development Engineering and Technology Research Center, Guangzhou 510275, Guangdong, China; 4. Guangdong Key Laboratory of Marine Civil Engineering, Guangzhou 510275, Guangdong, China; 5. Nanjing Jiangbei New Area Public Projects Construction Center, Nanjing 210000, Jiangsu, China
Abstract: This work systematically summarized four types of methods for predicting tunnelling induced ground movements, namely analytical solution, empirical equation, numerical simulation and model test method. The theory of four types of analytical solutions was firstly presented. The widely-used empirical equations and determination methods for the key parameters were introduced. The development of numerical analysis methods with respect to soil constitutive model and simulation technique was discussed. The 1g model test and centrifuge model test were presented in brief as well. Some suggestions on predicting tunnelling induced ground movements in China were presented according to the advantages and disadvantages of various methods.
[1] MINDLIN R D. Force at a point in the interior of a semi-infinite solid[J]. Physics, 1936, 7(5): 195-202. [2] 魏纲,徐日庆.软土隧道盾构法施工引起的纵向地面变形预测[J]. 岩土工程学报, 2005, 27(9): 1077-1081. WEI Gang, XU Riqing. Prediction of longitudinal ground deformation due to tunnel construction with shield in soft soil[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(9): 1077-1081. [3] 魏纲,张世民,齐静静,等. 盾构隧道施工引起的地面变形计算方法研究[J]. 岩石力学与工程学报, 2006, 25(增刊1): 3317-3323. WEI Gang, ZHANG Shimin, QI Jingjing, et al. Study on calculation method of ground deformation induced by shield tunnel construction[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(Suppl.1): 3317-3323. [4] TIMOSHENKO S P, GOODIER J N. Theory of Elasticity[M]. New York, USA: McGraw-Hill Higher Education, 1970. [5] BOBET A. Analytical solutions for shallow tunnels in saturated ground[J]. Journal of Engineering Mechanics, 2001, 127(12): 1258-1266. [6] PARK K H. Elastic solution for tunneling-induced ground movements in clays[J]. International Journal of Geomechanics, 2004, 4(4): 310-318. [7] LITWINISZYN J. The theories and model research of movements of ground masses[C] // Proceedings of the European Congress Ground Movements. Leeds, UK: University of Leeds, 1957: 202-209. [8] 刘宝琛. 随机介质理论及其在开挖引起的地表下沉问题中的应用[J]. 中国有色金属学报, 1992, 2(3): 8-14. [9] 谷拴成,李敏. 西安地铁盾构施工地表沉降随机介质预测研究[J]. 铁道工程学报, 2014, 31(3): 110-116. GU Shuancheng, LI Min. Study and prediction of surface settlement in Xi'an subway during shield construction based on stochastic medium theory[J]. Journal of Railway Engineering Society, 2014, 31(3): 110-116. [10] 施成华,彭立敏,雷明锋. 盾构法施工隧道地层变形时空统一预测方法研究[J]. 岩土力学, 2009, 30(8): 2379-2384. SHI Chenghua, PENG Limin, LEI Mingfeng. Study of time-space united calculating method of stratum deformation caused by shield tunnel excavation[J]. Rock and Soil Mechanics, 2009, 30(8): 2379-2384. [11] 齐静静,徐日庆,魏纲. 盾构施工引起土体三维变形的计算方法研究[J]. 岩土力学, 2009, 30(8): 2442-2446. QI Jingjing, XU Riqing, WEI Gang. Research on calculation method of soil 3D displacement due to shield tunnel construction[J]. Rock and Soil Mechanics, 2009, 30(8): 2442-2446. [12] YANG J S, LIU B C, WANG M C. Modeling of tunneling-induced ground surface movements using stochastic medium theory[J]. Tunnelling and Underground Space Technology, 2004, 19(2): 113-123. [13] SAGASETA C. Analysis of undrained soil deformation due to ground loss[J]. Géotechnique, 1987, 37(3): 301-320. [14] VERRUIJT A, BOOKER J R. Surface settlements due to deformation of a tunnel in an elastic half plane[J]. Géotechnique, 1996, 46(4): 753-756. [15] LOGANATHAN N, POULOS H G. Analytical prediction for tunneling-induced ground movements in clays[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124(9): 846-856.. [16] VERRUIJT A. A complex variable solution for a deforming circular tunnel in an elastic half-plane[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1997, 21(2): 77-89. [17] 王立忠, 吕学金. 复变函数分析盾构隧道施工引起的地基变形[J]. 岩土工程学报, 2007, 29(3):319-327. WANG Lizhong, LÜ Xuejin. A complex variable solution for different kinds of oval deformation around circular tunnel in an elastic half plane[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(3):319-327. [18] 张治国, 杨轩, 宫剑飞, 等. 复变函数法分析盾构隧道开挖引起的土体位移和衬砌变形[J]. 岩土工程学报, 2017, 39(9): 1626-1635. ZHANG Zhiguo, YANG Xuan, GONG Jianfei, et al. Complex variable analysis of soil displacement and liner deformation induced by shield excavation[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(9): 1626-1635. [19] 施有志. 双孔平行地铁隧道开挖的复变函数解析解与数值分析[D]. 泉州: 华侨大学, 2013. SHI Youzhi. Double-hole parallel tunnel excavation of complex analytical solution and numerical analysis[D]. Quanzhou: Huaqiao University, 2013. [20] FU J. Modelling ground movement and associated building response due to tunnelling in soils[D]. Freiberg,Germany:Technische Universitaet Bergakademie Freiberg, 2014. [21] 禹海涛, 陈功. 任意形状深埋隧道地震响应解析解[J]. 岩土工程学报, 2021, 43(7): 1331-1337. YU Haitao, CHEN Gong. Analytical solution for seismic response of deep tunnels with arbitrary cross-section shapes[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(7): 1331-1337. [22] 文明. 浅埋非圆形隧道开挖引起的力学响应解析解[J/OL].西南交通大学学报.[2021-04-22].https://kns.cnki.net/kcms/detail/51.1277.U.20210422.1139.002.html WEN Ming. Analytical solution of mechanical response in shallow non-circular tunnels [J/OL].Journal of Southwest Jiaotong University. [2021-04-22]. https://kns.cnki.net/kcms/detail/51.1277.U.20210422.1139.002.html [23] PECK R B. Deep Excavations and Tunneling in Soft Ground[C] //.Proceedings of the 7th International Conference on Soil Mechanics and Foundation Engineering, Mexico:[s.n.] , 1969. [24] 姜忻良,赵志民,李园. 隧道开挖引起土层沉降槽曲线形态的分析与计算[J]. 岩土力学, 2004, 25(10): 1542-1544. JIANG Xinliang, ZHAO Zhimin, LI Yuan. Analysis and calculation of surface and subsurface settlement trough profiles due to tunneling[J]. Rock and Soil Mechanics, 2004, 25(10): 1542-1544. [25] ATKINSON J H, POTTS D M. Stability of a shallow circular tunnel in cohesionless soil[J]. Géotechnique, 1977, 27(2): 203-215. [26] O'REILLY M P, NEW B M. Settlement above tunnels in the United Kingdom—their magnitude and prediction[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1983, 20(1): 18. [27] MAIR R J, TAYLOR R N, BRACEGIRDLE A. Subsurface settlement profiles above tunnels in clays[J]. Géotechnique, 1993, 43(2): 315-320. [28] CLOUGH G W, SCHMIDT B. Design and performance of excavations and tunnels in soft clay [J].Developments in Geotechnical Engineering, 1981, 20(C):567- 634. [29] MOH Z C, JU D H, HWANG R N. Ground movements around tunnels in soft ground [C] // Proceedings of the Int Symposium on Geotechnical Aspects of Underground Construction in Soft Ground. Rotterdam: Balkema, 1996:268-273. [30] 韩煊. 隧道施工引起地层位移及建筑物变形预测的实用方法研究[D]. 西安:西安理工大学, 2007. HAN Xuan. The analysis and prediction of tunnelling-induced building deformations[D]. Xi'an: Xi'an University of Technology, 2007. [31] 孙玉永, 周顺华, 宫全美. 软土地区盾构掘进引起的深层位移场分布规律[J]. 岩石力学与工程学报, 2009, 28(3): 500-506. SUN Yuyong, ZHOU Shunhua, GONG Quanmei. Distribution of deep displacement field during shield tunneling in soft-soil areas[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(3): 500-506. [32] 姜忻良,李林,袁杰,等. 深层地铁盾构施工地层水平位移动态分析[J]. 岩土力学, 2011, 32(4): 1186-1192. JIANG Xinliang, LI Lin, YUAN Jie, et al. Dynamic analysis of strata horizontal displacements induced by shield construction of deep tunnel[J]. Rock and Soil Mechanics, 2011, 32(4): 1186-1192. [33] MARSHALL A M, FARRELL R, KLAR A, et al. Tunnels in sands: the effect of size, depth and volume loss on greenfield displacements[J]. Géotechnique, 2012, 62(5): 385-399. [34] ZHAO C Y, LAVASAN A, BARCIAGA T, et al. Mechanized tunneling induced ground movement and its dependency on the tunnel volume loss and soil properties[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2019, 43(4): 781-800. [35] 韩霖磊,张孟喜,吴惠明,等. 盾构隧道施工诱发地层变形特征的透明土模型试验[J]. 公路工程, 2021, 46(4): 46-51. HAN Linlei, ZHANG Mengxi, WU Huiming, et al. Model test on subsurface ground settlement caused by shield tunnel construction based on transparent soil[J]. Highway Engineering, 2021, 46(4): 46-51. [36] JACOBSZ S W, STANDING J R, MAIR R J, et al. Centrifuge modelling of tunnelling near driven piles[J]. Soils and Foundations, 2004, 44(1): 49-56. [37] VORSTER T E, KLAR A, SOGA K, et al. Estimating the effects of tunneling on existing pipelines[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(11): 1399-1410. [38] CELESTINO T B, GOMES R A M P, BORTOLUCCI A A. Errors in ground distortions due to settlement trough adjustment[J]. Tunnelling and Underground Space Technology, 2000, 15(1): 97-100. [39] ATTEWELL P, YEATES J, SELBY A. Soil movements induced by tunnelling and their effects on pipelines and structures[J].Tunnelling and Underground Space Technology, 1986, 2(1):102. [40] 方恩权,杨玲芝,李鹏飞. 基于Peck公式修正的盾构施工地表沉降预测研究[J]. 现代隧道技术, 2015, 52(1): 143-149. FANG Enquan, YANG Lingzhi, LI Pengfei. Prediction of ground settlement induced by metro shield construction based on the modified peck formula[J]. Modern Tunnelling Technology, 2015, 52(1): 143-149. [41] FRANZIUS J N, POTTS D M. Influence of mesh geometry on three-dimensional finite-element analysis of tunnel excavation[J]. International Journal of Geomechanics, 2005, 5(3): 256-266. [42] KATZENBACH R, BRETH H. Nonlinear 3D analysis for NATM in Frankfurt clay [C] // Proceedings of the 10th Int Conf Soil Mechanics and Foundation Engineering. Rotterdam: Balkema, 1981: 315-318. [43] LEE K M, ROWE R K, LO K Y. Subsidence owing to tunnelling. I.estimating the gap parameter[J]. Canadian Geotechnical Journal, 1992, 29(6): 929-940. [44] DESARI G, RAWLINGS C, BOLTON M. Numerical modelling of a NATM tunnel construction in London clay [C] // Proceedings of the Int Symp on Geotechnical Aspects of Underground Construction in Soft Ground. Rotterdam: Balkema, 1996: 491-496. [45] DIAS D, KASTNER R, MAGHAZI M. Three dimensional simulation of slurry shield in tunnelling[C] // Proceedings of the International Symposium on Geotechnical Aspects of Underground Construction in Soft Ground. London, UK: CRC Press, 1999: 351-356. [46] 朱合华,丁文其,李晓军. 盾构隧道施工力学性态模拟及工程应用[J]. 土木工程学报, 2000, 33(3):98-103. ZHU Hehua, DING Wenqi, LI Xiaojun. Construction simulation for the mechanical behavior of shield tunnel and its application[J]. China Civil Engineering Journal, 2000, 33(3):98-103. [47] VERMEER P, BONNIER P, MOELLER S. On a smart use of 3D-FEM in tunneling [C] // Proceedings of the 8th Int Symp on Numerical Models in Geomech.London, UK: CRC Press, 2002: 361-366. [48] SHIN J H, POTTS D M, ZDRAVKOVIC L. Three-dimensional modelling of NATM tunnelling in decomposed granite soil[J]. Géotechnique, 2002, 52(3): 187-200. [49] 王善勇, 唐春安, 王述红, 等. 地铁开挖对地基沉降影响的数值分析[J]. 东北大学学报(自然科学版), 2002, 23(9): 887-890. WANG Shanyong, TANG Chun'an, WANG Shuhong, et al. Numerical simulation and research of the influence on the excavation of the subway to the bade sedimentation[J]. Journal of Northeastern University(Natural Science), 2002, 23(9): 887-890. [50] KASPER T, MESCHKE G. A 3D finite element simulation model for TBM tunnelling in soft ground[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2004, 28(14): 1441-1460. [51] 赵华松, 周文波, 刘涛, 等. 双线平行盾构施工引起的土体位移分析及其软件开发[J]. 上海大学学报(自然科学版), 2005, 11(4): 416-422. ZHAO Huasong, ZHOU Wenbo, LIU Tao, et al. Numerical simulation and software development of soil displacement due to double-tube parallel tunnels[J]. Journal of Shanghai University(Natural Science Edition), 2005, 11(4): 416-422. [52] 姜忻良,崔奕,李园,等. 天津地铁盾构施工地层变形实测及动态模拟[J]. 岩土力学, 2005, 26(10): 1612-1616. JIANG Xinliang, CUI Yi, LI Yuan, et al. Measurement and simulation of ground settlements of Tianjin subway shield tunnel construction[J]. Rock and Soil Mechanics, 2005, 26(10): 1612-1616. [53] MÖLLER S C, VERMEER P A. On numerical simulation of tunnel installation[J]. Tunnelling and Underground Space Technology, 2008, 23(4): 461-475. [54] MAŠÍN D. 3D modeling of an NATM tunnel in high K0 clay using two different constitutive models[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(9): 1326-1335. [55] 邱明明,姜安龙,舒勇. 城市地铁盾构施工地层变形三维数值模拟分析[J]. 防灾减灾工程学报, 2014, 34(2): 161-167. QIU Mingming, JIANG Anlong, SHU Yong. Three-dimensional numerical simulation analysis of stratum deformation induced by subway shield construction[J]. Journal of Disaster Prevention and Mitigation Engineering, 2014, 34(2): 161-167. [56] IERONYMAKI E, WHITTLE A J, SIMIC D. Comparison of free-field ground movements caused by mechanized and open-face tunneling [C]. Geotechnical Engineering for Infrastructure and Development.London, UK: Thomas Telford Ltd, 2015: 3669-3674. [57] ZHAO C Y, LAVASAN A A, BARCIAGA T, et al. Model validation and calibration via back analysis for mechanized tunnel simulations-the western scheldt tunnel case[J]. Computers and Geotechnics, 2015, 69: 601-614. [58] NINIC J, FREITAG S, MESCHKE G. A hybrid finite element and surrogate modelling approach for simulation and monitoring supported TBM steering[J]. Tunnelling and Underground Space Technology, 2017, 63: 12-28. [59] SHAH R, LAVASAN A A, PEILA D, et al. Numerical study on backfilling the tail void using a two-component grout[J]. Journal of Materials in Civil Engineering, 2018, 30(3): 4018003-40180011. [60] LIU C, PENG Z H, PAN L F, et al. Influence of tunnel boring machine(TBM)advance on adjacent tunnel during ultra-rapid underground pass(URUP)tunneling: a case study and numerical investigation[J]. Applied Sciences, 2020, 10(11): 3746-3770. [61] 仇文革,万世付,高刚刚, 等. 砂卵石地层盾构隧道下穿铁路咽喉区地表沉降控制研究[J]. 现代隧道技术, 2021, 58(5): 37-45. QIU Wenge, WAN Shifu, GAO Ganggang, et al. Study on the control measures against ground settlement induced by shield tunnel construction underneath railway throat in sandy cobble stratum[J]. Modern Tunnelling Technology, 2021, 58(5): 37-45. [62] 李明睿,陈国平,范秀江,等. 盾构施工对临近桩基影响的数值模拟及参数分析[J]. 土木与环境工程学报(中英文), 2022, 44(1): 45-52. LI Mingrui, CHEN Guoping, FAN Xiujiang, et al. Numerical study and parametric analysis of influence of tunnel excavation on adjacent pile foundation[J]. Journal of Civil and Environmental Engineering, 2022, 44(1): 45-52. [63] SCHANZ T, VERMEER P, BONNIER P. The hardening soil model: formulation and verification[C] // Proceedings of the 1st International PLAXIS Symposium on Beyond 2000 in Computational Geotechnics. Rotterdam:Balkema, 1999: 281-296. [64] BENZ T. Small-strain stiffness of soils and its numerical consequences[D]. Stuttgart, Germany:University of Stuttgar, 2006. [65] ROSCOE K H, BURLAND J B. On the generalised stress-strain behavior of ‘wet clay’ [J].Engineering Plasticity, 1968: 535-609. [66] DAFALIAS Y F, TAIEBAT M. Anatomy of rotational hardening in clay plasticity[J]. Géotechnique, 2013, 63(16): 1406-1418. [67] KARSTUNEN M, KRENN H, WHEELER S J, et al. Effect of anisotropy and destructuration on the behavior of murro test embankment[J]. International Journal of Geomechanics, 2005, 5(2): 87-97. [68] ROWE R K, LO K Y, KACK G J. A method of estimating surface settlement above tunnels constructed in soft ground[J]. Canadian Geotechnical Journal, 1983, 20(1): 11-22. [69] ADDENBROOKE T I, POTTS D M, PUZRIN A M. The influence of pre-failure soil stiffness on the numerical analysis of tunnel construction[J]. Géotechnique, 1997, 47(3): 693-712. [70] CARRANZA-TORRES C, FAIRHURST C. Application of the convergence-confinement method of tunnel design to rock masses that satisfy the Hoek-Brown failure criterion[J]. Tunnelling and Underground Space Technology, 2000, 15(2): 187-213. [71] BRINKGREVE R B J, VERMEER P A. PLAXIS finite element code for soil and rock analyses, version 8[M]. Rotterdam:Balkema, 2002. [72] ZHAO C Y, LAVASAN A A, HÖLTER R, et al. Mechanized tunneling induced building settlements and design of optimal monitoring strategies based on sensitivity field[J]. Computers and Geotechnics, 2018, 97: 246-260. [73] SHI J K, WANG F, ZHANG D M, et al. Refined 3D modelling of spatial-temporal distribution of excess pore water pressure induced by large diameter slurry shield tunneling[J]. Computers and Geotechnics, 2021, 137: 104312-104330. [74] SCHWEIGER H. Implementation, validation and application of the shotcrete model [R]. Austria, Graz:Graz University of Technology, 2014. [75] NINIC J, MESCHKE G. Simulation based evaluation of time-variant loadings acting on tunnel linings during mechanized tunnel construction[J]. Engineering Structures, 2017, 135: 21-40. [76] LAVASAN A A, ZHAO C Y, BARCIAGA T, et al. Numerical investigation of tunneling in saturated soil: the role of construction and operation periods[J]. Acta Geotechnica, 2018, 13(3): 671-691. [77] 叶飞,王斌,韩鑫,等. 盾构隧道壁后注浆试验与浆液扩散机理研究进展[J]. 中国公路学报, 2020, 33(12): 92-104. YE Fei, WANG Bin, HAN Xin, et al. Review of shield tunnel backfill grouting tests and its diffusion mechanism[J]. China Journal of Highway and Transport, 2020, 33(12): 92-104. [78] 吴悦,晏启祥,徐才厚,等. 大直径盾构始发阶段负环管片及螺栓受力优化分析[J]. 铁道标准设计, 2022, 66(5): 119-124. WU Yue, YAN Qixiang, XU Caihou, et al. Stress optimization analysis of partial segment and bolts in large diameter shield launching stage[J]. Railway Standard Design, 2022, 66(5): 119-124. [79] DO N A, DIAS D, ORESTE P, et al. 2D numerical investigation of segmental tunnel lining behavior[J]. Tunnelling and Underground Space Technology, 2013, 37: 115-127. [80] DO N A, DIAS D, ORESTE P, et al. Three-dimensional numerical simulation of a mechanized twin tunnels in soft ground[J]. Tunnelling and Underground Space Technology, 2014, 42: 40-51. [81] BLOM C. Design philosophy of concrete linings for tunnels in soft soils[D]. Delft, Netherlands:Technische Universiteit Delft(The Netherlands), 2002. [82] SCHUERCH R, ANAGNOSTOU G. The influence of the shear strength of the ground on the stand-up time of the tunnel face[C] // Tunnelling and underground space construction for sustainable development.Seoul,South Korea: CIR Publishing Co., 2013: 297-300 [83] ZHAO C Y, LAVASAN A A, SCHANZ T. Sensitivity analysis of the model response in mechanized tunneling simulation-a case study assessment[C] // Proceedings of the Engineering Optimization 2014. Boca Raton: CRC Press, 2014: 491-496. [84] DIAS D, KASTNER R, MAGHAZI M. Three dimensional simulation of slurry shield tunnelling[C]. Geotechnical Aspects of Underground Construction on SoftGround. London: Balkema, 2000: 351-356. [85] BROERE W. Influence of excess pore pressures on the stability of the tunnel face[C]. Claiming the Underground Space. London,UK:Routledge, 2003: 759-765. [86] ZHAO C Y, LAVASAN A, SCHANZ T. Application of submodeling technique in numerical modeling of mechanized tunnel excavation[J]. International Journal of Civil Engineering, 2019, 17(1): 75-89. [87] LAVASAN A A, ZHAO C Y, SCHANZ T. Adaptive constitutive soil modeling concept in mechanized tunneling simulation[J]. International Journal of Geomechanics, 2018, 18(9): 4018114-4018131. [88] CHEN L, LINGEN E J, DE BORST R. Adaptive hierarchical refinement of NURBS in cohesive fracture analysis[J]. International Journal for Numerical Methods in Engineering, 2017, 112(13): 2151-2173. [89] 李兴盛. 基于DE-GP协同优化算法的隧道极限位移预测[J]. 现代隧道技术, 2021, 58(2): 78-85. LI Xingsheng. Prediction of tunnel limit displacement based on DE-GP collaborative optimization algorithm[J]. Modern Tunnelling Technology, 2021, 58(2): 78-85. [90] 夏汉庸, 尹和军, 徐教煌, 等. 基于机器学习的多施工参数盾构施工姿态预测[J]. 测绘通报, 2021(1): 157-160. XIA Hanyong, YIN Hejun, XU Jiaohuang, et al. Multi-construction parameter shield construction attitude prediction based on machine learning[J]. Bulletin of Surveying and Mapping, 2021(1): 157-160. [91] 张哲铭, 李晓瑜, 姬建.基于LS-SVM的TBM掘进参数预测模型[J].河海大学学报(自然科学版),2021,49(4):373-379. ZHANG Zheming, LI Xiaoyu, JI Jian.TBM excavation parameter prediction model based on LS-SVM method[J].Journal of Hohai University(Natural Sciences), 2021, 49(4):373-379. [92] ZHANG Q L, LIU Z Y, TAN J R. Prediction of geological conditions for a tunnel boring machine using big operational data[J]. Automation in Construction, 2019, 100: 73-83. [93] ERHARTER G H, MARCHER T. On the pointlessness of machine learning based time delayed prediction of TBM operational data[J]. Automation in Construction, 2021, 121: 103443-103455. [94] GOH A T C, ZHANG W G, ZHANG Y M, et al. Determination of earth pressure balance tunnel-related maximum surface settlement: a multivariate adaptive regression splines approach[J]. Bulletin of Engineering Geology and the Environment, 2018, 77(2): 489-500. [95] ZHANG W G, ZHANG R H, WU C Z, et al. State-of-the-art review of soft computing applications in underground excavations[J]. Geoscience Frontiers, 2020, 11(4): 1095-1106. [96] 岳川, 张凯, 区穗辉. 城市信息模型在盾构法隧道工程中的应用[J]. 城市轨道交通研究, 2021, 24(7): 225-229. YUE Chuan, ZHANG Kai, OU Suihui. Application of urban information model in shield tunnel engineering[J]. Urban Mass Transit, 2021, 24(7): 225-229. [97] 郑刚, 张扶正, 张天奇, 等. 盾构隧道开挖及补偿注浆对地层扰动影响的室内试验及数值模拟研究[J]. 岩土工程学报, 2016, 38(10): 1741-1753. ZHENG Gang, ZHANG Fuzheng, ZHANG Tianqi, et al. Disturbance of shield tunnel excavation and compensation groutingto surrounding soil: laboratory tests and numerical simulations[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(10): 1741-1753. [98] 房倩, 杜建明, 王中举, 等. 盾构施工影响下砂土地层变形规律模型试验研究[J]. 中国公路学报, 2021, 34(5): 135-143. FANG Qian, DU Jianming, WANG Zhongju, et al. Model experimental study on stratum deformation of shield tunnelling in sand[J]. China Journal of Highway and Transport, 2021, 34(5): 135-143. [99] 李文涛. 基于人工合成透明土盾构隧道壁后同步注浆模型试验研究[D].北京: 北京交通大学, 2015. LI Wentao. Model test of shield tunnel backfill grouting using synthetic transparent soil[D]. Beijing: Beijing Jiaotong University, 2015. [100] 张莎莎, 戴志仁, 白云. 盾构隧道同步注浆浆液压力消散规律研究[J]. 中国铁道科学, 2012, 33(3): 40-48. ZHANG Shasha, DAI Zhiren, BAI Yun. Research on the dissipation law of grout pressure during the simultaneous grouting of shield tunnel[J]. China Railway Science, 2012, 33(3): 40-48. [101] 马少坤, 韦榕宽, 邵羽, 等. 基于透明土的隧道开挖面稳定性三维可视化模型试验研究及应用[J]. 岩土工程学报, 2021, 43(10): 1798-1806. MA Shaokun, WEI Rongkuan, SHAO Yu, et al. 3D visual model tests on stability of tunnel excavation surface based on transparent soil[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(10): 1798-1806. [102] 丁文其, 段超, 赵天驰, 等. 类矩形盾构同步注浆压力分布与影响试验分析[J]. 现代隧道技术, 2016, 53(增刊1): 209-215. DING Wenqi, DUAN Chao, ZHAO Tianchi, et al. Experimental study on pressure distribution and influence of synchronous grouting of quasi-rectangular tunnels[J]. Modern Tunnelling Technology, 2016, 53(Suppl.1): 209-215. [103] DING W Q, DUAN C, ZHU Y H, et al. The behavior of synchronous grouting in a quasi-rectangular shield tunnel based on a large visualized model test[J]. Tunnelling and Underground Space Technology, 2019, 83: 409-424. [104] SCHOFIELD A N. Cambridge Geotechnical Centrifuge Operations [J]. Géotechnique, 1980, 30(3): 227-268. [105] 马险峰, 王俊淞, 李削云, 等. 盾构隧道引起地层损失和地表沉降的离心模型试验研究[J]. 岩土工程学报, 2012, 34(5): 942-947. MA Xianfeng, WANG Junsong, LI Xiaoyun, et al. Centrifuge modeling of ground loss and settlement caused by shield tunnelling in soft ground[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(5): 942-947. [106] MARSHALL A M, FARRELL R, KLAR A, et al. Tunnels in sands: the effect of size, depth and volume loss on greenfield displacements[J]. Géotechnique, 2012, 62(5): 385-399. [107] SONG G Y, MARSHALL A M. Centrifuge modelling of tunnelling induced ground displacements: pressure and displacement control tunnels[J]. Tunnelling and Underground Space Technology, 2020, 103: 103461- 103478. [108] 杨林松, 刘继国, 舒恒, 等. 超大直径盾构隧道下穿铁路施工的离心机模型试验研究[J]. 现代隧道技术, 2021, 58(4): 170-177. YANG Linsong, LIU Jiguo, SHU Heng, et al. Centrifugal model test on construction process of a super large diameter shield tunnel passing under existing railway[J]. Modern Tunnelling Technology, 2021, 58(4): 170-177.