Please wait a minute...
 
隧道与地下工程灾害防治  2022, Vol. 4 Issue (3): 10-30    DOI: 10.19952/j.cnki.2096-5052.2022.03.02
  前沿综述 本期目录 | 过刊浏览 | 高级检索 |
机器学习在盾构隧道智能施工中的应用——综述与展望
潘秋景1,李晓宙1,黄杉2,汪来1,王树英1,方国光3
1.中南大学土木工程学院, 湖南 长沙 410075;2.中铁五局电务城通公司, 湖南 长沙 410117;3.新加坡科技设计大学, 新加坡 新加坡 487372
Application of machine learning to intelligent shield tunnelling: review and prospects
PAN Qiujing1, LI Xiaozhou1, HUANG Shan2, WANG Lai1, WANG Shuying1, FANG Guoguang3
1. College of Civil Engineering, Central South University, Changsha 410075, Hunan, China;
2. China Railway No.5 Engineering Group Electric City Communication Co., Ltd., Changsha 410117, Hunan, China;
3. Singapore University of Technology and Design, Singapore 487372, Singapore
下载:  PDF (10011KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 对国内外盾构施工中机器学习方法的应用研究现状进行文献调研,针对盾构掘进参数、地层类别与不良地质、地表沉降、姿态偏差和刀具磨损等5个主题,分析梳理机器学习方法及模型输入输出参数的选择情况,归纳总结现有研究的不足和问题,并从模型泛化能力、盾构施工多源异构数据降维压缩与协同融合、基于数据-物理双驱动的盾构智能掘进控制、盾构隧道施工大数据等方面对未来的研究给出了展望,以期为基于机器学习和数据驱动的盾构施工智能化研究和实践提供指导。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
潘秋景
李晓宙
黄杉
汪来
王树英
方国光
关键词:  机器学习  盾构隧道  智能掘进  掘进参数  地表沉降  姿态预测    
Abstract: This paper made a comprehensive literature review on the topic of applying machine learning methods to shield tunnelling parameter predictions, stratum predictions ahead of a tunnel face, surface settlements prediction, shield attitude deviation and tool wear predictions. The selections of machine learning methods and the associated input and output parameters were analyzed, and the shortcomings and challenges of existing research were summarized. Some prospects were given, including the model generalization, multi-source heterogeneous data compression and assimilation, data-physics-based intelligent shield tunnelling, big data in shield tunnelling, in order to provide reference and guidance for the future research and engineering practice.
Key words:  machine learning    shield tunnelling    intelligent shield tunnelling    shield tunneling parameter    surface settlements    attitude prediction
收稿日期:  2021-10-19      修回日期:  2022-02-20      发布日期:  2022-09-20     
中图分类号:  U455.43  
基金资助: 国家自然科学基金优青资助项目(52022112);国家自然科学基金青年科学基金资助项目(52108388);湖湘青年英才基金资助项目(2021RC3015);湖南省自然科学基金青年基金资助项目(2022JJ40611)
作者简介:  潘秋景(1987— ),男,湖南岳阳人,博士,教授,硕士生导师,主要研究方向为盾构掘进安全与智能决策、岩土工程大数据分析. E-mail:qiujing.pan@csu.edu.cn
引用本文:    
潘秋景, 李晓宙, 黄杉, 汪来, 王树英, 方国光. 机器学习在盾构隧道智能施工中的应用——综述与展望[J]. 隧道与地下工程灾害防治, 2022, 4(3): 10-30.
PAN Qiujing, LI Xiaozhou, HUANG Shan, WANG Lai, WANG Shuying, FANG Guoguang. Application of machine learning to intelligent shield tunnelling: review and prospects. Hazard Control in Tunnelling and Underground Engineering, 2022, 4(3): 10-30.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2022/V4/I3/10
[1] 洪开荣.我国隧道及地下工程发展现状与展望[J].隧道建设,2015,35(2):95-107. HONG Kairong. State-of-art and prospect of tunnels and underground works in China[J]. Tunnel Construction, 2015, 35(2): 95-107.
[2] 陈湘生,李克,包小华,等.城市盾构隧道数字化智能建造发展概述[J].应用基础与工程科学学报,2021,29(5):1057-1074. CHEN Xiangsheng, LI Ke, BAO Xiaohua, et al. An overview of the development of digital intelligent construction of urban shield tunnels[J]. Journal of Basic Science and Engineering, 2021, 29(5):1057-1074.
[3] 王鹏.基于机器学习的地铁隧道施工扰动控制研究[J].现代隧道技术,2019,56(增刊2):368-373. WANG Peng. Control of construction disturbance induced by shield tunnelling based on machine learning[J]. Modern Tunnelling Technology, 2019, 56(Suppl.2): 368-373.
[4] SHAHROUR I, ZHANG W G. Use of soft computing techniques for tunneling optimization of tunnel boring machines[J]. Underground Space, 2021, 6(3): 233-239.
[5] 石茂林,孙伟,宋学官.隧道掘进机大数据研究进展:数据挖掘助推隧道挖掘[J].机械工程学报,2021,57(22):344-358. SHI Maolin, SUN Wei, SONG Xueguan. Research progress on big data of tunnel boring machine: how data mining can help tunnel boring[J]. Journal of Mechanical Engineering, 2021, 57(22): 344-358.
[6] 吴煊鹏,乐贵平,江玉生.中国盾构工程科技新进展[M].北京:人民交通出版社,2019.
[7] 洪开荣,杜彦良,陈馈, 等.中国全断面隧道掘进机发展历程、成就及展望[J].隧道建设(中英文),2022,42(5):739-756. HONG Kairong, DU Yanliang, CHEN Kui, et al. Full-face tunnel boring machines(shields/TBMs)in China: history, achievements, and prospects[J]. Tunnel Construction, 2022, 42(5): 739-756.
[8] JORDAN M I, MITCHELL T M. Machine learning: trends, perspectives, and prospects[J]. Science, 2015, 349(6245): 255-260.
[9] ZHANG W G, PHOON K K. Editorial for Advances and applications of deep learning and soft computing in geotechnical underground engineering[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2022, 14(3): 671-673.
[10] SHREYAS S K, DEY A. Application of soft computing techniques in tunnelling and underground excavations: state of the art and future prospects[J]. Innovative Infrastructure Solutions, 2019, 4(1): 1-15.
[11] ZHANG W G, LI H R, LI Y Q, et al. Application of deep learning algorithms in geotechnical engineering: a short critical review[J]. Artificial Intelligence Review, 2021, 54(8): 5633-5673.
[12] ZHANG W G, LI Y Q, WU C Z, et al. Prediction of lining response for twin tunnels constructed in anisotropic clay using machine learning techniques[J]. Underground Space, 2022, 7(1): 122-133.
[13] SHEIL B B, SURYASENTANA S K, MOONEY M A, et al. Machine learning to inform tunnelling operations: recent advances and future trends[J]. Proceedings of the Institution of Civil Engineers-Smart Infrastructure and Construction, 2020, 173(4): 74-95.
[14] 王树英,傅金阳,张聪. 盾构隧道工程: 从理论到实践[M].长沙:中南大学出版社,2022.
[15] 赵博剑,周建军,谭忠盛,等.复合地层盾构掘进参数及其与地层相关性分析[J].土木工程学报,2017,50(增刊1): 140-144. ZHAO Bojian, ZHOU Jianjun, TAN Zhongsheng, et al. Variation of shield boring parameters and correlation analysis in mixed ground[J]. China Civil Engineering Journal, 2017, 50(Suppl.1): 140-144.
[16] 肖超,阳军生,李科,等. 穿越湘江地层裂隙密集区域大直径泥水平衡盾构掘进参数控制[J]. 铁道科学与工程学报, 2013, 10(5): 40-46. XIAO Chao, YANG Junsheng, LI Ke, et al. Parametric control of large-diameter slurry shield tunneling parameter crossing dense cracks of stratum[J]. Journal of Railway Science and Engineering, 2013, 10(5): 40-46.
[17] 李杰,张斌,付柯,等. 基于现场掘进数据的复合地层盾构掘进性能预测方法研究[J]. 现代隧道技术, 2019,56(4): 97-104. LI Jie, ZHANG Bin, FU Ke, et al. Site data based prediction of shield driving performance in compound strata[J]. Modern Tunnelling Technology, 2019, 56(4): 97-104.
[18] 宋克志,杨华勋,安凯,等. 复杂岩石地层盾构掘进速率预测模型研究[J]. 公路交通科技, 2008, 25(11): 105-108. SONG Kezhi, YANG Huaxun, AN Kai, et al. Shield tunneling rate prediction model for complex rock stratum[J]. Journal of Highway and Transportation Research and Development, 2008, 25(11): 105-108.
[19] 魏纲,周洋,魏新江.土压平衡盾构掘进参数对地面隆起影响的研究[J].地下空间与工程学报,2012,8(增刊2): 1703-1709. WEI Gang, ZHOU Yang, WEI Xinjiang. Research of influence of EBP shield tunneling parameters on ground uplift[J]. Chinese Journal of Underground Space and Engineering, 2012, 8(Suppl.2): 1703-1709.
[20] 李承辉,贺少辉,刘夏冰. 粗粒径砂卵石地层中泥水平衡盾构下穿黄河掘进参数控制研究[J].土木工程学报, 2017, 50(增刊2): 147-152. LI Chenghui, HE Shaohui, LIU Xiabing. Study on main parameters control of tunneling through the Yellow River by a slurry balance shield in sandy gravel stratum with some large-size grains[J]. China Civil Engineering Journal, 2017, 50(Suppl.2): 147-152.
[21] 杨旸,谭忠盛,彭斌,等. 富水圆砾地层土压平衡盾构掘进参数优化研究[J]. 土木工程学报, 2017, 50(增刊1): 94-98. YANG Yang, TAN Zhongsheng, PENG Bin, et al. Study on optimization boring parameters of earth pressure balance shield in water-soaked round gravel strata[J]. China Civil Engineering Journal, 2017, 50(Suppl.1): 94-98.
[22] 管会生,张瑀,杨延栋. 新街台格庙矿区斜井隧道双模式盾构关键掘进参数配置研究[J].隧道建设, 2015, 35(4): 377-381. GUAN Huisheng, ZHANG Yu, YANG Yandong. Study on key boring parameters of dual-mode shield used for inclined shaft of Xinjie Taigemiao Mines[J]. Tunnel Construction, 2015, 35(4): 377-381.
[23] CACHIM P, BEZUIJEN A. Modelling the torque with artificial neural networks on a tunnel boring machine[J]. KSCE Journal of Civil Engineering, 2019, 23(10): 4529-4537.
[24] 朱小藻.复杂地层中盾构掘进速度的调控分析: 以新建铁路横琴至珠海机场段HJZQ-2标隧道工程为例[J].隧道建设(中英文),2020,40(增刊1):107-114. ZHU Xiaozao. Analysis of EPB shield advancing speed control in composite strata: a case study on tunnel project of HJZQ-2 bid of newly-built Hengqin-Zhuhai Airport Section[J]. Tunnel Construction, 2020, 40(Suppl.1): 107-114.
[25] 孙谋,刘维宁.软土地层盾构近距穿越老式建筑区掘进参数分析[J].土木工程学报,2009,42(12):170-176. SUN Mou, LIU Weining. Parameters analysis for shield tunneling under old buildings in soft ground[J]. China Civil Engineering Journal, 2009, 42(12): 170-176.
[26] 李超,李涛,李正,等. 基于BP神经网络的复合地层盾构掘进参数预测与分析[J]. 土木工程学报, 2017, 50(增刊1): 145-150. LI Chao, LI Tao, LI Zheng, et al. Prediction and analysis of shield boring parameters in a mixed ground based on BP neural network[J]. China Civil Engineering Journal, 2017, 50(Suppl.1): 145-150.
[27] GAO M Y, ZHANG N, SHEN S L, et al. Real-time dynamic earth-pressure regulation model for shield tunneling by integrating GRU deep learning method with GA optimization[J]. IEEE Access, 2020, 8: 64310-64323.
[28] KANG T, CHOI S, LEE C, et al. A study on prediction of EPB shield TBM advance rate using machine learning technique and TBM construction information[J]. Tunnel and Underground Space, 2020,30(6):540-550.
[29] SALIMI A, ROSTAMI J, MOORMANN C, et al. Application of non-linear regression analysis and artificial intelligence algorithms for performance prediction of hard rock TBMs[J]. Tunnelling and Underground Space Technology, 2016, 58: 236-246.
[30] SHAO Chengjun, LI Xiuliang, SU Hongye. Performance prediction of hard rock TBM based on extreme learning machine[C] //Proceedings of the International Conference on Intelligent Robotics and Applications.Busan, South Korea: ICIRA, 2013: 409-416.
[31] GAO L, LI X B. Utilizing partial least square and support vector machine for TBM penetration rate prediction in hard rock conditions[J]. Journal of Central South University, 2015, 22(1): 290-295.
[32] 张社荣,方鑫,和孙文.基于MIV-BP模型和AIC准则的盾构掘进参数优化研究[J].铁道标准设计,2019,63(8):95-101. ZHANG Sherong, FANG Xin, HE Sunwen. Research on boring parameters optimization for shield based on MIV-BP model and AIC criterion[J]. Railway Standard Design, 2019, 63(8): 95-101.
[33] 仉文岗,唐理斌,陈福勇,等. 基于4种超参数优化算法及随机森林模型预测TBM掘进速度[J].应用基础与工程科学学报,2021,29(5):1186-1200. ZHANG Wengang, TANG Libin, CHEN Fuyong, et al. Prediction for TBM penetration rate using four hyperparameter optimization methods and random forest model[J]. Journal of Basic Science and Engineering, 2021, 29(5): 1186-1200.
[34] FATTAHI H, BABANOURI N. Applying optimized support vector regression models for prediction of tunnel boring machine performance[J]. Geotechnical and Geological Engineering, 2017, 35(5): 2205-2217.
[35] ARMAGHANI D J, MOHAMAD E T, NARAYANASAMY M S, et al. Development of hybrid intelligent models for predicting TBM penetration rate in hard rock condition[J]. Tunnelling and Underground Space Technology, 2017, 63: 29-43.
[36] JAKUBOWSKI J, STYPULKOWSKI J B, BERNARDEAU F G. Multivariate linear regression and CART regression analysis of TBM performance at Abu Hamour Phase-i Tunnel[J]. Archives of Mining Sciences, 2017, 62(4): 825-841.
[37] SALIMI A, ROSTAMI J, MOORMANN C. Evaluating the suitability of existing rock mass classification systems for TBM performance prediction by using a regression tree[J]. Procedia Engineering, 2017, 191: 299-309.
[38] XU H, ZHOU J, ASTERIS P G, et al. Supervised machine learning techniques to the prediction of tunnel boring machine penetration rate[J]. Applied Sciences, 2019, 9(18): 3715.
[39] KOOPIALIPOOR M, TOOTOONCHI H, JAHED ARMAGHANI D, et al. Application of deep neural networks in predicting the penetration rate of tunnel boring machines[J]. Bulletin of Engineering Geology and the Environment, 2019, 78(8): 6347-6360.
[40] SALIMI A, ROSTAMI J, MOORMANN C. Application of rock mass classification systems for performance estimation of rock TBMs using regression tree and artificial intelligence algorithms[J]. Tunnelling and Underground Space Technology, 2019, 92:103046.
[41] 汪俊.富水强渗透圆砾地层土压平衡盾构掘进参数分析预测[J]. 铁道建筑技术, 2020(10):66-69. WANG Jun. Parameter analysis and prediction of EPB shield tunneling in highly permeable and water rich gravel stratum[J]. Railway Construction Technology, 2020(10): 66-69.
[42] HOU G Y, XU Z D, LI L, et al. Shield tunneling parameter matching model and UI interface[J]. Advances in Civil Engineering, 2020, 2020: 9562828.
[43] WANG Q, XIE X Y, SHAHROUR I. Deep learning model for shield tunneling advance rate prediction in mixed ground condition considering past operations[J]. IEEE Access,2020,8: 215310-215326.
[44] ZHANG Q L, HU W F, LIU Z Y, et al. TBM performance prediction with Bayesian optimization and automated machine learning[J]. Tunnelling and Underground Space Technology, 2020, 103: 103493.
[45] NAGRECHA K, FISHER L, MOONEY M, et al. As-encountered prediction of tunnel boring machine performance parameters using recurrent neural networks[J]. Transportation Research Record: Journal of the Transportation Research Board, 2020, 2674(10): 241-249.
[46] ZHANG Q L, LIU Z Y, TAN J R. Predicting the performance of tunnel boring machines using big operational data[C] //2020 IEEE Sixth International Conference on Big Data Computing Service and Applications(BigDataService). Oxford, UK: IEEE, 2020: 179-182.
[47] ZHOU J, YAZDANI BEJARBANEH B, JAHED ARMAGHANI D, et al. Forecasting of TBM advance rate in hard rock condition based on artificial neural network and genetic programming techniques[J]. Bulletin of Engineering Geology and the Environment, 2020, 79(4): 2069-2084.
[48] 王锋. 盾构穿越回填区域扭矩参数预测识别[J]. 铁道建筑技术, 2021(8):129-131. WANG Feng. Prediction and identification of torque parameters for shield tunneling through backfill area[J]. Railway Construction Technology, 2021(8): 129-131.
[49] 牟松,段文军,庄元顺,等.基于权重优化神经网络的盾构机掘进参数预测方法[J]. 中国工程机械学报, 2021,19(2):111-116. MU Song, DUAN Wenjun, ZHUANG Yuanshun, et al. Shield machine tunneling parameter prediction method based on weight optimization neural network[J]. Chinese Journal of Construction Machinery, 2021, 19(2): 111-116.
[50] 徐一帆,王士民,何川,等.基于BP神经网络的复合地层盾构掘进参数预测[J]. 铁道标准设计, 2022, 66(7): 120-125. XU Yifan, WANG Shimin, HE Chuan, et al. Prediction of driving parameters of shield tunnel in composite strata based on back propagation neural network[J]. Railway Standard Design, 2022, 66(7): 120-125.
[51] LIN S S, SHEN S L, ZHANG N, et al. Modelling the performance of EPB shield tunnelling using machine and deep learning algorithms[J]. Geoscience Frontiers, 2021, 12(5): 101177.
[52] FU X L, ZHANG L M. Spatio-temporal feature fusion for real-time prediction of TBM operating parameters: a deep learning approach[J]. Automation in Construction, 2021, 132: 103937.
[53] GARCIA G R, MICHAU G, EINSTEIN H H, et al. Decision support system for an intelligent operator of utility tunnel boring machines[J]. Automation in Construction, 2021, 131: 103880.
[54] GUO D, LI J H, JIANG S H, et al. Intelligent assistant driving method for tunnel boring machine based on big data[J]. Acta Geotechnica, 2022, 17(4): 1019-1030.
[55] XU C, LIU X L, WANG E Z, et al. Prediction of tunnel boring machine operating parameters using various machine learning algorithms[J]. Tunnelling and Underground Space Technology, 2021, 109: 103699.
[56] ZENG J, ROY B, KUMAR D, et al. Proposing several hybrid PSO-extreme learning machine techniques to predict TBM performance[J]. Engineering With Computers, 2021: 1-17.
[57] LI J H, LI P X, GUO D, et al. Advanced prediction of tunnel boring machine performance based on big data[J]. Geoscience Frontiers, 2021, 12(1): 331-338.
[58] WANG R H, LI D Q, CHEN E J, et al. Dynamic prediction of mechanized shield tunneling performance[J]. Automation in Construction, 2021, 132: 103958.
[59] WANG X, ZHU H H, ZHU M Q, et al. An integrated parameter prediction framework for intelligent TBM excavation in hard rock[J]. Tunnelling and Underground Space Technology, 2021, 118: 104196.
[60] JIN Y R, QIN C J, TAO J F, et al. An accurate and adaptative cutterhead torque prediction method for shield tunneling machines via adaptative residual long-short term memory network[J]. Mechanical Systems and Signal Processing, 2022, 165: 108312.
[61] 王林,杨世东,李攀.盾构隧道穿越河堤引发异常沉降原因分析及治理[J].石家庄铁道大学学报(自然科学版),2013,26(9):204-211.
[62] FARROKH E, ROSTAMI J. Correlation of tunnel convergence with TBM operational parameters and chip size in the Ghomroud Tunnel, Iran[J]. Tunnelling and Underground Space Technology, 2008, 23(6): 700-710.
[63] 柳宏达. 南京地铁过江段盾构施工技术[J].石家庄铁道大学学报(自然科学版), 2013, 26(增刊1): 27-28.
[64] 李俊逸. 复合地层土压平衡盾构隧道掘进参数与安全控制技术研究[D]. 成都: 西南交通大学, 2015. LI Junyi. Study on parameters of EPB shield driving and safety control technology of shield tunnel construction in mixed ground[D]. Chengdu: Southwest Jiaotong University, 2015.
[65] 李正. 深圳复合地层Φ7m盾构掘进参数与地层相关性研究[D]. 北京: 北京交通大学, 2016. LI Zheng. Correlation study between tunneling parameters of Φ7m EPB TBM and geotechnical properties of Shenzhen's complex stratum[D]. Beijing: Beijing Jiaotong University, 2016.
[66] 邢彤. 盾构刀盘液压驱动与控制系统研究[D]. 杭州: 浙江大学, 2008. XING Tong. Research on hydraulic drive and control system of the cutter head in shield tunneling machine[D]. Hangzhou: Zhejiang University, 2008.
[67] LIU M B, LIAO S M, MEN Y Q, et al. Field monitoring of TBM vibration during excavating changing stratum: patterns and ground identification[J].Rock Mechanics and Rock Engineering, 2022, 55(3): 1481-1498.
[68] 刘建东,郭京波,王旭东.基于盾构掘进参数的孤石地层识别方法研究[J].隧道建设(中英文),2019,39(7):1132-1140. LIU Jiandong, GUO Jingbo, WANG Xudong. Recognition methods for boulder geology based on shield tunneling parameters[J]. Tunnel Construction, 2019, 39(7): 1132-1140.
[69] 朱北斗,龚国芳,周如林, 等. 基于盾构掘进参数的BP神经网络地层识别[J]. 浙江大学学报(工学版), 2011, 45(5): 851-857. ZHU Beidou, GONG Guofang, ZHOU Rulin, et al. Identification of strata with BP neural network based on parameters of shield driving[J]. Journal of Zhejiang University(Engineering Science), 2011, 45(5): 851-857.
[70] 邵成猛.基于盾构掘进参数的LVQ神经网络地层识别[J].石家庄铁道大学学报(自然科学版),2016,29(1):93-96. SHAO Chengmeng. Identification of strata with LVQ neural network based on shield tunneling parameters[J]. Journal of Shijiazhuang Tiedao University(Natural Science Edition), 2016, 29(1): 93-96.
[71] 宫思艺,孔宪光,刘丹, 等. 融入复杂地层动态识别的盾构施工地表沉降预测方法研究[J]. 仪器仪表学报, 2019, 40(6): 228-236. GONG Siyi, KONG Xianguang, LIU Dan, et al. An approach for predicting shield construction ground surface settlement of complex stratum using dynamical strata identification[J]. Chinese Journal of Scientific Instrument, 2019, 40(6): 228-236.
[72] NIE S W, XUE L, JIA G P, et al. Identification of surrounding rock in TBM excavation with deep neural network[C] //2019 2nd International Conference on Artificial Intelligence and Big Data(ICAIBD). Chengdu, China:IEEE,2019: 251-255.
[73] LIU M B, LIAO S M, YANG Y F, et al. Tunnel boring machine vibration-based deep learning for the ground identification of working faces[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2021, 13(6): 1340-1357.
[74] ZHANG C, LIANG M M, SONG X G, et al. Generative adversarial network for geological prediction based on TBM operational data[J]. Mechanical Systems and Signal Processing, 2022, 162:108035.
[75] ALIMORADI A, MORADZADEH A, NADERI R, et al. Prediction of geological hazardous zones in front of a tunnel face using TSP-203 and artificial neural networks[J]. Tunnelling and Underground Space Technology, 2008, 23(6): 711-717.
[76] ZHANG Q L, LIU Z Y, TAN J R. Prediction of geological conditions for a tunnel boring machine using big operational data[J]. Automation in Construction, 2019, 100: 73-83.
[77] JUNG J H, CHUNG H, KWON Y S, et al. An ANN to predict ground condition ahead of tunnel face using tbm operational data[J]. KSCE Journal of Civil Engineering, 2019, 23(7): 3200-3206.
[78] LIU Q S, WANG X Y, HUANG X, et al. Prediction model of rock mass class using classification and regression tree integrated AdaBoost algorithm based on TBM driving data[J]. Tunnelling and Underground Space Technology, 2020, 106: 103595.
[79] 刘明阳,余宏淦,陶建峰,等. 基于盾构机运行参数的局部切空间排列与Xgboost融合的地质类型识别[J]. 中南大学学报(自然科学版), 2022, 53(6): 2080-2091. LIU Mingyang, YU Honggan, TAO Jianfeng, et al. Geological-type identification with LTSA and Xgboost algorithm based on EPB shield operating data[J]. Journal of Central South University(Science and Technology), 2022, 53(6): 2080-2091.
[80] 朱梦琦,朱合华,王昕,等. 基于集成CART算法的TBM掘进参数与围岩等级预测[J]. 岩石力学与工程学报, 2020, 39(9): 1860-1871. ZHU Mengqi, ZHU Hehua, WANG Xin, et al. Study on CART-based ensemble learning algorithms for predicting TBM tunneling parameters and classing surrounding rockmasses [J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(9): 1860-1871.
[81] 段志伟,杜立杰,吕海明,等. 基于主成分分析与BP神经网络的TBM围岩可掘性分级实时识别方法研究[J]. 隧道建设(中英文), 2020, 40(3): 379-388. DUAN Zhiwei, DU Lijie, LÜ Haiming, et al. Real-time identification method of TBM surrounding rock excavatability grade based on principal component analysis and BP neural network[J]. Tunnel Construction, 2020, 40(3): 379-388.
[82] 宋克志,袁大军,王梦恕. 基于盾构掘进参数分析的隧道围岩模糊判别[J]. 土木工程学报, 2009, 42(1): 107-113. SONG Kezhi, YUAN Dajun, WANG Mengshu. Fuzzy identification of surrounding rock conditions based on analysis of shield tunneling data[J]. China Civil Engineering Journal, 2009, 42(1): 107-113.
[83] ZHANG Q, YANG K H, WANG L H, et al. Geological type recognition by machine learning on in situ data of EPB tunnel boring machines[J]. Mathematical Problems in Engineering, 2020, 2020: 3057893.
[84] LIU B, WANG R, ZHAO G, et al. Prediction of rock mass parameters in the TBM tunnel based on BP neural network integrated simulated annealing algorithm[J]. Tunnelling and Underground Space Technology, 2020, 95: 103103.
[85] YU H G, TAO J F, QIN C J, et al. Rock mass type prediction for tunnel boring machine using a novel semi-supervised method[J]. Measurement, 2021, 179: 109545.
[86] CHEN W, WAN W, PENG W Q. Prediction of rock mass rating using neural network with an improved rider optimization algorithm[J/OL].Evolutionary Intelligence, 2021: 1-13.[2022-09-08].https://doi.org/10.1007/s12065-021-00606-w.
[87] SEBBEH-NEWTON S, AYAWAH P E A, AZURE J W A, et al. Towards TBM automation: on-the-fly characterization and classification of ground conditions ahead of a TBM using data-driven approach[J]. Applied Sciences, 2021, 11(3): 1060.
[88] LIU Z B, LI L, FANG X L, et al. Hard-rock tunnel lithology prediction with TBM construction big data using a global-attention-mechanism-based LSTM network[J]. Automation in Construction, 2021, 125: 103647.
[89] YU H G, TAO J F, QIN C J, et al. A novel constrained dense convolutional autoencoder and DNN-based semi-supervised method for shield machine tunnel geological formation recognition[J]. Mechanical Systems and Signal Processing, 2022, 165: 108353.
[90] 周志广,冀彦卓. 地铁施工引发地面沉降的BP神经网络预测分析[J]. 地质灾害与环境保护, 2014, 25(3): 97-102. ZHOU Zhiguang, JI Yanzhuo. BP neural network based prediction of ground subsidence caused by subway construction[J]. Journal of Geological Hazards and Environment Preservation, 2014, 25(3): 97-102.
[91] CHEN R P, ZHANG P, KANG X, et al. Prediction of maximum surface settlement caused by earth pressure balance(EPB)shield tunneling with ANN methods[J]. Soils and Foundations, 2019, 59(2): 284-295.
[92] WANG F, GOU B C, QIN Y W. Modeling tunneling-induced ground surface settlement development using a wavelet smooth relevance vector machine[J]. Computers and Geotechnics, 2013, 54: 125-132.
[93] MOGHADDASI M R, NOORIAN-BIDGOLI M. ICA-ANN, ANN and multiple regression models for prediction of surface settlement caused by tunneling[J]. Tunnelling and Underground Space Technology, 2018, 79: 197-209.
[94] ZHANG W G, LI H R, WU C Z, et al. Soft computing approach for prediction of surface settlement induced by earth pressure balance shield tunneling[J]. Underground Space, 2021, 6(4): 353-363.
[95] 陈仁朋,邹聂,吴怀娜,等.盾构掘进地表沉降机器学习预测与控制研究综述[J].华中科技大学学报(自然科学版),2022,50(8):56-65. CHEN Renpeng, ZOU Nie, WU Huaina, et al. Review of prediction and control for surface settlement caused by shield tunneling based on machine learning[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2022, 50(8):56-65.
[96] 孙钧,袁金荣. 盾构施工扰动与地层移动及其智能神经网络预测[J]. 岩土工程学报, 2001, 23(3):261-267. SUN Jun, YUAN Jinrong. Soil disturbance and ground movement under shield tunnelling and its intelligent prediction by using ANN technology[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(3): 261-267.
[97] KIM C Y, BAE G J, HONG S W, et al. Neural network based prediction of ground surface settlements due to tunnelling[J]. Computers and Geotechnics, 2001, 28(6/7): 517-547.
[98] 璩继立,峁会勇. 盾构施工地面长期沉降的神经网络预测[J]. 上海地质, 2004, 25(3): 42-46. QU Jili, MAO Huiyong. Artificial neural network prediction of surface long-term settlement induced by shield construction[J]. Shanghai Geology, 2004, 25(3): 42-46.
[99] 安红刚,孙钧,胡向东,等. 盾构法隧道施工地表变形的小样本智能预测[J]. 成都理工大学学报(自然科学版), 2005, 32(4): 362-367. AN Honggang, SUN Jun, HU Xiangdong, et al. Intelligent prediction of ground deformation by small samples in the shield tunnel construction[J]. Journal of Chengdu University of Technology(Science & Technology Edition), 2005, 32(4): 362-367.
[100] 王利丰,孙树林,曹继平. 盾构施工引起地表变形的人工神经网络研究[J]. 地下空间与工程学报, 2005, 1(5): 761-764. WANG Lifeng, SUN Shulin, CAO Jiping. Prediction of ground deformation during tunnel excavation by ANN[J]. Chinese Journal of Underground Space and Engineering, 2005, 1(5): 761-764.
[101] SUWANSAWAT S, EINSTEIN H H. Artificial neural networks for predicting the maximum surface settlement caused by EPB shield tunneling[J]. Tunnelling and Underground Space Technology, 2006, 21(2): 133-150.
[102] 侯喜冬. 盾构施工引起地表沉降的BP神经网络预测[J]. 隧道建设, 2007, 27(3): 17-20. HOU Xidong. BP neural network prediction of surface settlement resulted by shield tunneling[J]. Tunnel Construction, 2007, 27(3): 17-20.
[103] 王铁生,张留柱,张冰. 遗传神经网络及其在地表安全测控中的应用[J]. 测绘科学技术学报, 2007, 24(1): 67-69. WANG Tiesheng, ZHANG Liuzhu, ZHANG Bing. GA & NN monitoring model and its application on surface settlement[J]. Journal of Zhengzhou Institute of Surveying and Mapping, 2007, 24(1): 67-69.
[104] 施一萍,赵敏媛,苏前敏. 盾构施工引起地表变形预测系统的设计与实现[J]. 机械设计与研究, 2009, 25(6): 61-63. SHI Yiping, ZHAO Minyuan, SU Qianmin. The design and implementation of prediction system for groundsurface deformation caused by shield construction[J]. Machine Design & Research, 2009, 25(6): 61-63.
[105] 孙钧,王东栋. 地铁施工变形预测与控制的智能方法[J]. 施工技术, 2009, 38(1): 3-9. SUN Jun, WANG Dongdong. Intelligent prediction and control method of deformation in metro construction[J]. Construction Technology, 2009, 38(1): 3-9.
[106] SHAN F, HE X, ARMAGHANI D J, et al. Success and challenges in predicting TBM penetration rate using recurrent neural networks[J]. Tunnelling and Underground Space Technology, 2022, 130: 104728.
[107] 乔金丽,范永利,刘波,等. 基于改进BP网络的盾构隧道开挖地表沉降预测[J]. 地下空间与工程学报, 2012, 8(2): 352-357. QIAO Jinli, FAN Yongli, LIU Bo, et al. Predicting the surface settlement by shield tunneling based on modified BP network[J]. Chinese Journal of Underground Space and Engineering, 2012, 8(2): 352-357.
[108] BOUBOU R, EMERIAULT F, KASTNER R. Prediction of surface settlements induced by TBM using artificial neural networks method[M] //Geotechnical Aspects of Underground Construction in Soft Ground.[S.l.] : CRC Press, 2012:809-816.
[109] POURTAGHI A, LOTFOLLAHI-YAGHIN M A. Wavenet ability assessment in comparison to ANN for predicting the maximum surface settlement caused by tunneling[J]. Tunnelling and Underground Space Technology, 2012, 28: 257-271.
[110] 李宗梁,银鸽. 盾构施工引起地面沉降的双子神经网络预测[J]. 地下空间与工程学报, 2014, 10(1): 191-200. LI Zongliang, YIN Ge. Application of artificial neural network with two subnets for predication of ground settlement during shield construction[J]. Chinese Journal of Underground Space and Engineering, 2014, 10(1): 191-200.
[111] 刘朝福,保石才,杨起. 盾构施工引起的地表沉降预测及其敏感性分析[J]. 公路交通科技(应用技术版), 2014, 10(4): 202-204.
[112] 郝如江,季雁鹏,倪振利. 基于DEACO-WNN的盾构施工地表沉降预测[J]. 铁道工程学报, 2015,32(1):12-16. HAO Rujiang, JI Yanpeng, NI Zhenli. Study on predicting the surface settlement for shield tunneling based on DEACO-WNN[J]. Journal of Railway Engineering Society, 2015, 32(1): 12-16.
[113] AHANGARI K, MOEINOSSADAT S R, BEHNIA D. Estimation of tunnelling-induced settlement by modern intelligent methods[J]. Soils and Foundations, 2015, 55(4): 737-748.
[114] 麻凤海,季峰. 地铁盾构施工引起邻近建筑物沉降的数值拟合[J]. 徐州工程学院学报(自然科学版), 2016,31(2):9-13. MA Fenghai, JI Feng. Numerical fitting of adjacent building settlement caused by shield tunneling of subway[J]. Journal of Xuzhou Institute of Technology(Natural Sciences Edition), 2016, 31(2): 9-13.
[115] 赵凤阳. 小波神经网络在隧道施工沉降预测中的应用[J]. 测绘科学, 2016,41(12):283-287. ZHAO Fengyang. Application of wavelet neural network in the monitoring of tunnel settlement[J]. Science of Surveying and Mapping, 2016, 41(12): 283-287.
[116] WANG F, LU H L, GOU B C, et al. Modeling of shield-ground interaction using an adaptive relevance vector machine[J]. Applied Mathematical Modelling, 2016, 40(9/10): 5171-5182.
[117] MOEINOSSADAT S R, AHANGARI K, SHAHRIAR K. Calculation of maximum surface settlement induced by EPB shield tunnelling and introducing most effective parameter[J]. Journal of Central South University, 2016, 23(12): 3273-3283.
[118] BOUAYAD D, EMERIAULT F. Modeling the relationship between ground surface settlements induced by shield tunneling and the operational and geological parameters based on the hybrid PCA/ANFIS method[J]. Tunnelling and Underground Space Technology, 2017, 68: 142-152.
[119] 李兴春,李兴高. 基于神经模糊推理系统的盾构施工地表沉降预测[J]. 北京交通大学学报, 2018, 42(1): 18-24. LI Xingchun, LI Xinggao. Prediction of ground surface settlement induced by shield tunneling construction based on neural fuzzy inference system[J]. Journal of Beijing Jiaotong University, 2018, 42(1): 18-24.
[120] 林荣安,孙钰丰,戴振华,等. 基于RS-SVR的上软下硬地层盾构施工地表沉降预测[J]. 中国公路学报, 2018,31(11):130-137. LIN Rongan, SUN Yufeng, DAI Zhenhua, et al. Predicting for ground surface settlement induced by shield tunneling in upper-soft and lower-hard ground based on RS-SVR[J]. China Journal of Highway and Transport, 2018, 31(11): 130-137.
[121] 潘宇平,倪静,李林,等. 基于LIB-SVM的盾构隧道地表沉降预测方法研究[J]. 水资源与水工程学报, 2018,29(3):231-235. PAN Yuping, NI Jing, LI Lin, et al. Prediction method of ground surface settlement caused by shield tunnel construction based on LIB-SVM[J]. Journal of Water Resources and Water Engineering, 2018, 29(3): 231-235.
[122] 韩冰,袁颖. 基于主成分分析的GA-SVM地表沉降预测模型[J]. 中国科技论文, 2018,13(9):1045-1049. HAN Bing, YUAN Ying. Application of GA-SVM model based on principal component nalysis to prediction of surface settlement of shield construction[J]. China Sciencepaper, 2018, 13(9): 1045-1049.
[123] 周爱红,倪莹莹,尹超,等. 一种盾构施工引起的地面沉降预测方法[J]. 测绘科学, 2018,43(3):167-172. ZHOU Aihong, NI Yingying, YIN Chao, et al. A prediction method of the land subsidence caused by shield construction of PCA-PSO-SVM[J]. Science of Surveying and Mapping, 2018, 43(3): 167-172.
[124] MOEINOSSADAT S R, AHANGARI K, SHAHRIAR K. Control of ground settlements caused by EPBS tunneling using an intelligent predictive model[J]. Indian Geotechnical Journal, 2018, 48(3): 420-429.
[125] HAN D, LI X J. The surface subsidence prediction of shield construction based on the fuzzy neural network[C] //Proceedings of GeoShanghai 2018 International Conference: Tunnelling and Underground Construction. Shanghai: GeoShanghai, 2018: 190-197.
[126] MOEINOSSADAT S R, AHANGARI K, SHAHRIAR K. Modeling maximum surface settlement due to EPBM tunneling by various soft computing techniques[J]. Innovative Infrastructure Solutions, 2017, 3(1): 1-13.
[127] 武铁路. 基于深度学习的破碎带盾构施工沉降预测分析[J]. 隧道建设(中英文), 2019,39(2):197-203. WU Tielu. Ground settlement prediction of shield tunneling in fractured zone based on deep learning method[J]. Tunnel Construction, 2019, 39(2): 197-203.
[128] 杨欢欢,杨双锁,罗百胜. 地铁盾构施工地表变形的神经网络预测及应用[J]. 中国科技论文, 2019,14(6):625-629. YANG Huanhuan, YANG Shuangsuo, LUO Baisheng. Prediction and application of neural network on surface deformation from subway shield tunneling construction[J]. China Sciencepaper, 2019, 14(6): 625-629.
[129] ZHANG P, CHEN R P, WU H N. Real-time analysis and regulation of EPB shield steering using Random Forest[J]. Automation in Construction, 2019, 106: 102860.
[130] ZHANG P. A novel feature selection method based on global sensitivity analysis with application in machine learning-based prediction model[J]. Applied Soft Computing, 2019, 85: 105859.
[131] MOEINOSSADAT S R, AHANGARI K. Estimating maximum surface settlement due to EPBM tunneling by numerical-intelligent approach-a case study: tehran subway line 7[J]. Transportation Geotechnics, 2019, 18: 92-102.
[132] 李洛宾,龚晓南,甘晓露,等. 基于循环神经网络的盾构隧道引发地面最大沉降预测[J]. 土木工程学报, 2020,53(增刊1):13-19. LI Luobin, GONG Xiaonan, GAN Xiaolu, et al. Prediction of maximum ground settlement induced by shield tunneling based on recurrent neural network[J]. China Civil Engineering Journal, 2020, 53(Suppl.1): 13-19.
[133] 岳岭,刘方,刘辉,等. 基于人工神经网络的大直径盾构隧道施工地层变形预测分析[J]. 铁道标准设计, 2020,64(1):122-126. YUE Ling, LIU Fang, LIU Hui, et al. Prediction and analysis of ground deformation in large diameter shield tunnel construction based on artificial neural network[J]. Railway Standard Design, 2020, 64(1): 122-126.
[134] 赵振华,胡锡鹏,孙鹤明,等. 城市盾构隧道施工地表沉降BP神经网络预测应用研究[J]. 路基工程, 2020(4):170-175. ZHAO Zhenhua, HU Xipeng, SUN Heming, et al. Application of BP neural network in prediction of ground settlement in urban shield tunneling[J]. Subgrade Engineering, 2020(4): 170-175.
[135] ZHANG P, WU H N, CHEN R P, et al. Hybrid meta-heuristic and machine learning algorithms for tunneling-induced settlement prediction: a comparative study[J]. Tunnelling and Underground Space Technology, 2020, 99: 103383.
[136] ZHANG P, WU H N, CHEN R P, et al. A critical evaluation of machine learning and deep learning in shield-ground interaction prediction[J]. Tunnelling and Underground Space Technology, 2020, 106: 103593.
[137] ZHANG K, LÜ H M, SHEN S L, et al. Data on evolutionary hybrid neural network approach to predict shield tunneling-induced ground settlements[J]. Data in Brief, 2020, 33: 106432.
[138] 陈仁朋,戴田,张品,等. 基于机器学习算法的盾构掘进地表沉降预测方法[J]. 湖南大学学报(自然科学版), 2021,48(7):111-118. CHEN Renpeng, DAI Tian, ZHANG Pin, et al. Prediction method of tunneling-induced ground settlement using machine learning algorithms[J]. Journal of Hunan University(Natural Sciences), 2021, 48(7): 111-118.
[139] 李翔宇,李新源,李明宇,等. 基于实测数据的地铁隧道长期沉降预测模型研究[J]. 西安建筑科技大学学报(自然科学版), 2021,53(2):186-193. LI Xiangyu, LI Xinyuan, LI Mingyu, et al. Research on prediction model of the long-term subsidence of shield tunnels based on in situ monitoring data[J]. Journal of Xi'an University of Architecture & Technology(Natural Science Edition), 2021, 53(2): 186-193.
[140] 王祥,陈发达,刘凯,等. 基于随机森林-支持向量机隧道盾构引起建筑物沉降研究[J]. 土木工程与管理学报, 2021,38(1):86-92. WANG Xiang, CHEN Fada, LIU Kai, et al. Study on building settlement deformation caused by random forest based support vector machine tunnel shield[J]. Journal of Civil Engineering and Management, 2021, 38(1): 86-92.
[141] 王雪明,刘陕南,肖晓春,等. 改进GA-BP神经网络在盾构推进地面沉降中的预测及应用[J]. 智能计算机与应用, 2021,11(6):161-167. WANG Xueming, LIU Shannan, XIAO Xiaochun, et al. Prediction and application of improved GA-BP neural network in land subsidence of shield tunnelling[J]. Intelligent Computer and Applications, 2021, 11(6): 161-167.
[142] 胡
[1] 魏纲, 徐天宝, 张治国. 复杂应力路径下波纹钢加固盾构隧道数值分析[J]. 隧道与地下工程灾害防治, 2023, 5(2): 24-32.
[2] 王智, 刘祥勇, 朱先发, 洪小星, 沈一鸣, 张冰利. 小曲率半径隧道施工对盾构管片结构影响[J]. 隧道与地下工程灾害防治, 2023, 5(1): 45-54.
[3] 韩兴博,陈子明,苏恩杰,梁晓明,宋桂峰,叶飞. 盾构隧道围岩压力分布规律及作用模式[J]. 隧道与地下工程灾害防治, 2022, 4(4): 34-43.
[4] 喻伟,林赞权,朱彬彬,汪元冶,丁文其,乔亚飞,张晓东,龚琛杰. 盾构隧道防水密封垫材料的高温老化后性能[J]. 隧道与地下工程灾害防治, 2022, 4(4): 52-58.
[5] 赵辰洋,罗毛毛,邱静怡,倪芃芃,赵锋烽. 盾构隧道施工引起地层变形预测方法综述[J]. 隧道与地下工程灾害防治, 2022, 4(3): 31-46.
[6] 丁智, 李鑫家, 张霄. 基于机器学习的盾构掘进地表变形预测研究与展望[J]. 隧道与地下工程灾害防治, 2022, 4(3): 1-9.
[7] 吕玺琳,赵庾成,曾盛. 砂层中盾构隧道开挖面稳定性物理模型试验[J]. 隧道与地下工程灾害防治, 2022, 4(3): 67-76.
[8] 张治国,程志翔,陈杰,吴钟腾,李云正. 盾构隧道接缝渗漏水诱发既有管线变形模型试验[J]. 隧道与地下工程灾害防治, 2022, 4(3): 77-91.
[9] 刘祥勇,张鑫,王军,赵涛宁,朱先发. 盾构施工对邻近建筑物群结构影响评价[J]. 隧道与地下工程灾害防治, 2022, 4(3): 99-106.
[10] 黄昕, 谷冠思, 张子新, 李昀. 考虑渗流的泥水平衡盾构隧道稳定性数值模拟[J]. 隧道与地下工程灾害防治, 2022, 4(2): 28-38.
[11] 许有俊, 王智广, 张旭, 郭飞, 高胜雷, 杨昆. 小转弯半径盾构隧道施工引起的地层变形特征[J]. 隧道与地下工程灾害防治, 2022, 4(2): 11-18.
[12] 陈峰军, 宗军良, 王祺, 禹海涛. 地面出入式超浅埋盾构隧道静力响应模型试验[J]. 隧道与地下工程灾害防治, 2022, 4(2): 66-72.
[13] 马少俊, 李鑫家, 王乔坎, 丁智. 某深基坑开挖对邻近既有盾构隧道影响实测分析[J]. 隧道与地下工程灾害防治, 2022, 4(1): 86-94.
[14] 房倩, 杜建明, 王赶, 杨晓旭. 模型边界对圆形隧道开挖引起地表沉降的影响分析[J]. 隧道与地下工程灾害防治, 2022, 4(1): 10-17.
[15] 涂智溢,郭洪雨,孙飞,钟方杰,郑浩龙,张哲. 闹市区复杂环境下大直径盾构小净距下穿运营地铁隧道的应对措施及分析[J]. 隧道与地下工程灾害防治, 2021, 3(4): 75-84.
[1] QIAN Qihu. Scientific use of the urban underground space to construction the harmonious livable and beautiful city[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 1 -7 .
[2] DENG Mingjiang, LIU Bin. Challenges, countermeasures and development direction of geological forward-prospecting for TBM cluster tunneling in super-long tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 8 -19 .
[3] DING Xiuli, ZHANG Yuting, ZHANG Chuanjian, YAN Tianyou, HUANG Shuling. Review on countermeasures and their adaptability evaluation to tunnels crossing active faults[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 20 -35 .
[4] JIAO Yuyong, ZHANG Weishe, OU Guangzhao, ZOU Junpeng, CHEN Guanghui. Review of the evolution and mitigation of the water-inrush disaster in drilling-and-blasting excavated deep-buried tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 36 -46 .
[5] ZHANG Qingsong, ZHANG Lianzhen, LI Peng, FENG Xiao. New progress in grouting reinforcement theory of water-rich soft stratum in underground engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 47 -57 .
[6] XIA Kaiwen, XU Ying, CHEN Rong. Dynamic tests of rocks subjected to simulated deep underground environments[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 58 -75 .
[7] HONG Kairong. Study on rock breaking and wear of TBM hob in high-strength high-abrasion stratum[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 76 -85 .
[8] TAN Zhongsheng. Application experimental study of high-strength lattice girders with heat treatment in tunnel engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 86 -92 .
[9] CHEN Jianxun, LUO Yanbin. The stability of structure and its control technology for lager-span loess tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 93 -101 .
[10] JING Hongwen, YU Liyuan, SU Haijian, GU Jincai, YIN Qian. Development and application of catastrophic experiment system for water inrush in surrounding rock of deep tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 102 -110 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn