Please wait a minute...
 
隧道与地下工程灾害防治
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
基于多尺度地质特征增强与深度卷积网络的隧道掌子面围岩等级智能评估
钟浩1,张永平2,蔡先庆1*,袁松1,孔庆轩3,孙浩1,郭胜4
(1.四川省交通勘察设计研究院有限公司,四川 成都 610031;2. 四川省铁路建设有限公司,四川 成都 610031;3. 四川成绵苍巴高速公路有限责任公司成都分公司,四川 成都 610213;4. 四川省交通运输重点项目工作中心,四川 成都 610041)
Intelligent assessment of surrounding rock grade of tunnel face based on multi-scale geological feature enhancement and deep convolutional network
ZHONG Hao1, ZHANG Yongping2, CAI Xianqing1*,YUAN Song1,KONG Qingxuan3, SUN Hao1,GUO Sheng4
(1. Sichuan Communication Surveying & Design Institute Co., Ltd., Chengdu 610031, Sichuan, China; 2.Sichuan Provincial Railway Construction Co., Ltd., Chengdu 610031, Sichuan, China;3.Chengdu Branch of Sichuan Chengmiancangba Expressway Construction & Development Group Co., Ltd., Chengdu 610213, Sichuan, China;4.Sichuan Provincial Transportation Key Project Work Center, Chengdu 610041, Sichuan,China)
下载:  PDF (2265KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对隧道掌子面图像质量退化与特征表达单一性问题,提出一种融合多尺度渐进式增强与深度语义建模的围岩智能评估方法。通过多尺度图像增强框架,结合空域滤波与变换域去噪,信噪比提升12.7 dB,显著增强裂隙、节理等关键地质结构的可见性。基于灰度共生矩阵、改进型局部二值模式和RGB颜色矩,构建四维综合评价指标体系,实现岩体状态量化表征。改进ResNet架构集成多尺度特征提取和双重注意力机制(通道注意力+空间注意力),并采用加权交叉熵-标签平滑复合损失函数,解决类别不平衡问题。基于5 000张掌子面图像构建多层数据库,模型在测试集上准确率达94.27%(较基准模型提升4.93%),计算复杂度4.8 G FLOPs(floating point operations)。实际案例验证表明,该方法可为隧道施工提供实时、客观的地质决策支持,显著提升围岩分级智能化水平。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
钟浩
张永平
蔡先庆
袁松
孔庆轩
孙浩
郭胜
关键词:  围岩等级评估  多尺度特征增强  地质特征融合  改进ResNet  双重注意力机制    
Abstract: To address the issues of image quality degradation and single feature expression in tunnel face images, an intelligent rock mass evaluation method integrating multi-scale progressive enhancement and deep semantic modeling was proposed. A multi-scale image enhancement framework combining spatial domain filtering and transform domain denoising was employed, by which the signal-to-noise ratio was increased by 12.7 dB with significantly enhanced visibility of key geological structures including fractures and joints. A four-dimensional comprehensive evaluation index system was constructed based on the gray-level co-occurrence matrix, improved local binary pattern, and RGB color moments for quantitative rock mass characterization.The ResNet architecture was improved through integration of multi-scale feature extraction and dual attention mechanisms (channel attention + spatial attention), while a weighted cross-entropy-label smoothing composite loss function was adopted to address class imbalance.   Based on a constructed database of 5,000 tunnel face images, the model accuracy of 94.27% was achieved on the test set (4.93% higher than the baseline model) with a computational complexity of 4.8 G FLOPs. Practical case verification indicated that the proposed method could provide real-time,objective geological decision support for tunnel construction,significantly improving the intelligence level of rock mass classification
Key words:  tunnel palm face    surrounding rock grade assessment    multi-scale feature enhancement    geologic feature fusion    improved ResNet    dual-attention mechanism
收稿日期:  2025-06-30      修回日期:  2025-08-14      发布日期:  2025-08-18     
中图分类号:  U459  
基金资助: 四川省科技赋能防灾减灾救灾“揭榜挂帅”资助项目(2025YFNH0003)
通讯作者:  蔡先庆(1975—),男,四川宜宾人,正高级工程师,硕士,主要研究方向为岩体工程及灾害防治。    E-mail:  398433924@qq.com
作者简介:  钟浩(1997—),男,四川成都人,初级工程师,硕士,主要研究方向为岩溶隧道及特殊路基。E-mail:912815346@qq.com
引用本文:    
钟浩, 张永平, 蔡先庆, 袁松, 孔庆轩, 孙浩, 郭胜. 基于多尺度地质特征增强与深度卷积网络的隧道掌子面围岩等级智能评估[J]. 隧道与地下工程灾害防治, .
ZHONG Hao, ZHANG Yongping, CAI Xianqing, YUAN Song, KONG Qingxuan, SUN Hao, GUO Sheng. Intelligent assessment of surrounding rock grade of tunnel face based on multi-scale geological feature enhancement and deep convolutional network. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1-13.
链接本文:  
[1] 钟浩,蔡先庆,孙浩,孔庆轩,张永平. 温度影响下砂岩三轴压缩行为:加荷特性、剪切变形及预测软件研发[J]. 隧道与地下工程灾害防治, 2025, 7(2): 81-95.
[2] 张亮亮. 纵向排烟V形坡隧道火灾烟流特性现场火灾试验研究[J]. 隧道与地下工程灾害防治, 2023, 5(2): 71-79.
[3] 马安震, 谭海星, 刘洋, 关少钰. 复杂环境下大断面矩形顶管隧道管节设计[J]. 隧道与地下工程灾害防治, 2023, 5(1): 81-89.
[4] 马安震, 谭海星, 刘洋, 关少钰. 复杂环境下大断面矩形顶管隧道管节设计[J]. 隧道与地下工程灾害防治, 0, (): 1-9.
[5] 王明耀, 鲁义强, 贺飞, 李潮. 软岩大变形分类分级方法及TBM适应性[J]. 隧道与地下工程灾害防治, 2022, 4(4): 79-90.
[6] 苟晓军, 赵金泉, 季玮, 花晓鸣, 范占锋. 隧道不良地质构造雷达特征数值模拟研究[J]. 隧道与地下工程灾害防治, 0, (): 1-19.
[7] 苟晓军, 赵金泉, 季玮, 花晓鸣, 范占锋. 隧道不良地质构造雷达特征数值模拟[J]. 隧道与地下工程灾害防治, 2025, 7(1): 68-82.
[8] 钟浩, 孔庆轩, 孙浩. 温度影响下砂岩三轴压缩行为:加荷特性、剪切变形及预测软件研发[J]. 隧道与地下工程灾害防治, 0, (): 1-19.
[9] 曹成威, 石钰锋, 徐长节, 侯世磊, 龚宏华, 纪松岩. 某明挖深基坑地下连续墙非对称配筋优化设计[J]. 隧道与地下工程灾害防治, 2022, 4(1): 63-70.
[10] 王明耀, 鲁义强, 贺飞, 李潮. 软岩大变形分类分级方法及TBM适应性探讨[J]. 隧道与地下工程灾害防治, 0, (): 1-.
[1] ZHANG Ning, HUANG Xinjie, WANG Chuan, XU Bin, ZHANG Jiancheng, ZHANG Bo. Experimental and numerical simulation of high-pressure water jet cutting concrete[J]. Hazard Control in Tunnelling and Underground Engineering, 2023, 5(4): 47 -56 .
[2] WANG Lichuan , HE Weiguo, ZHANG Junru , WU Hongbin , JIANG Xinqiang , ZHANG Huijian , WANG Wen , HUANG Linxiang. Application of the steel pipe pile arch cover method in large-span underground metro stations in weak and fragmented rock strata[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -14 .
[3] Gou Xiaojun, Zhao Jinquan, Ji Wei, Hua Xiaoming, fan zhanfeng. Numerical simulation of radar characteristics of adverse geological structures in tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -19 .
[4] WANG Dongwei, HE Weiguo, DAI Xin, TIAN Feng, CHEN Yang. Exploration of rescue evacuation and ventilation technology for deep buried combined construction method subsea railway tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -12 .
[5] LI Lianran, REN Zhouhong, WANG Bin, ZHANG Quan, HUANG Hao, LIU Jijin, XU Haoyu, GUO Qian. Inverse wavefield transform method for opposing coils transient electromagnetic data and its application in ahead prospecting in the  lead-zinc mine at Huize[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -20 .
[6] WEI Songyuan, MA Jingyi, PENG Zhenhua, LIU Jianli, LI Wei. Reliability analysis of surrounding rocks stability of underground water-sealed caverns[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -3 .
[7] WANG Dongwei, HE Weiguo, DAI Xin, TIAN Feng, CHEN Yang. Exploration of rescue evacuation and ventilation technology for deep buried combined construction method subsea railway tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2025, 7(1): 1 -10 .
[8] XIAO Peiwei, YANG Xingguo, QIAN Hongjian, WANG Haofan, LI Biao, XU Nuwen. The best supporting time of hydraulic tunnels based on multiple monitoring information[J]. Hazard Control in Tunnelling and Underground Engineering, 2025, 7(1): 11 -21 .
[9] DING Jianqi, WANG Chencheng, ZHU Xiangshan, ZHANG Xiang, FU Gang, XU Jingmin. Influence mechanism of large diameter tunnel construction on adjacent buildings[J]. Hazard Control in Tunnelling and Underground Engineering, 2025, 7(1): 22 -34 .
[10] WU Jiangtao, LI Yingjie. The lightweight object detection algorithm for obstacles in tunnel construction environments[J]. Hazard Control in Tunnelling and Underground Engineering, 2025, 7(1): 48 -56 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn