Please wait a minute...
 
隧道与地下工程灾害防治  2025, Vol. 7 Issue (1): 68-82    DOI: 10.19952/j.cnki.2096-5052.2025.01.07
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
隧道不良地质构造雷达特征数值模拟
苟晓军1,赵金泉1,季玮1,花晓鸣1,范占锋2
1.四川蜀工公路工程试验检测有限公司, 四川 成都 610100;2.成都大学建筑与土木工程学院, 四川 成都 610106
Numerical simulation of radar characteristics of adverse geological structures in tunnels
GOU Xiaojun1, ZHAO Jinquan1, JI Wei1, HUA Xiaoming1, FAN Zhanfeng2
1. Sichuan Shugong Highway Engineering Test Co., Ltd., Chengdu 610100, Sichuan, China;
2. School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, Sichuan, China
下载:  PDF (47293KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为在超前地质预报中准确判识隧道中的不良地质构造体,总结隧道中常见的岩溶、断层破碎带、软夹层3种典型不良地质构造,根据介质的组合情况将其归纳为岩溶2类4种构造模型、断层破碎带2类4种构造模型、软夹层1类3种构造模型。以自编Python程序进行自动化建模,建立随机的多介质耦合岩溶空洞、断层破碎带、软弱夹层3种不良地质构造,并以Python程序自动调用GprMax,对三大类不良地质体的雷达特征进行数值模拟。结果表明:地质雷达产生的电磁波在水中会产生二次假地质异常体;在水与其他介质混合的模型中,无异常体的区域会出现微弱的反射;溶洞呈现出“二次曲线型”特征、破碎带呈现出“条带状”特征、软弱夹层的呈现出“层析错断型”特征。结合某高速公路几座典型隧道实际情况,通过地质雷达对上述典型不良地质体的探测,将上述模拟图像特征应用到实际工程,结果吻合。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
苟晓军
赵金泉
季玮
花晓鸣
范占锋
关键词:  隧道不良地质构造  地质雷达  数值模拟  图像特征    
Abstract: In order to accurately identify the unfavorable geological structures in tunnels through advanced geological prediction, three typical unfavorable geological structures in tunnels, namely karst, fault fracture zone and soft interlayer, were summarized. According to the combination of media, they were classified into 2 types and 4 structural models of karst, 2 types and 4 structural models of fault fracture zone, and 1 type and 3 structural models of soft interlayer. The self-compiled Python program was used for automatic modeling to establish three types of unfavorable geological structures, namely random multi-media coupling karst voids, fault fracture zones and weak interlayers. The Python program automatically called GprMax to numerically simulate the radar characteristics of the three types of unfavorable geological bodies. The results showed that the electromagnetic waves generated by the geological radar would produce secondary pseudo-geological anomalies in water; in the model where water was mixed with other media, weak reflections would appear in the area without anomalies; the karst cave presented the characteristics of "quadratic curve type", the fracture zone presented the characteristics of "strip-shaped" and the soft interlayer presented the characteristics of "stratification fault type". Combined with the actual situation of several typical tunnels of a certain highway, the above-mentioned simulated image features were applied to actual engineering through the detection of the above-mentioned typical unfavorable geological bodies by geological radar, and the results were consistent.
Key words:  bad geological structure of tunnel    geological radar    numerical simulation    image featureReceived: 2024-10-21    Revised: 2024-11-30    Accepted: 2024-12-03    Published: 2025-03-20
发布日期:  2025-03-28     
中图分类号:  U459.2  
基金资助: 四川省科学技术厅区域创新合作资助项目(2025YFHZ0321)
作者简介:  苟晓军(1991— ),男,四川巴中人,工程师,硕士,主要研究方向为隧道与地下空间检测、监测、预报技术. E-mail:1058314749@qq.com
引用本文:    
苟晓军,赵金泉,季玮,花晓鸣,范占锋. 隧道不良地质构造雷达特征数值模拟[J]. 隧道与地下工程灾害防治, 2025, 7(1): 68-82.
GOU Xiaojun, ZHAO Jinquan, JI Wei, HUA Xiaoming, FAN Zhanfeng. Numerical simulation of radar characteristics of adverse geological structures in tunnels. Hazard Control in Tunnelling and Underground Engineering, 2025, 7(1): 68-82.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2025/V7/I1/68
[1] 张小宝, 司富安, 段世委, 等. 深埋水工长隧洞主要工程地质问题与勘察经验[J]. 水利规划与设计, 2021(12): 55-60. ZHANG Xiaobao, SI Fuan, DUAN Shiwei, et al. Main engineering geological problems and survey experience of deep buried hydraulic long tunnel[J]. Water Resources Planning and Design, 2021(12): 55-60.
[2] 何发亮, 吴德胜, 郭如军, 等. 隧道施工地质灾害与致灾构造及其致灾模式[M]. 成都: 西南交通大学出版社, 2015: 38-52.
[3] 张会刚, 张广泽, 毛邦燕. 沪昆客专小高山隧道突水突泥及致灾原因探析[J]. 铁道工程学报, 2016, 33(8): 66-70. ZHANG Huigang, ZHANG Guangze, MAO Bangyan. Mechanism analysis and water and mud breakout in the Xiaogao Mountain Tunnel in Shanghai-Kunming Passenger Dedicated Railway[J]. Journal of Railway Engineering Society, 2016, 33(8): 66-70.
[4] 周黎明, 付代光, 肖国强, 等. 隧道超前地质预报中的地质雷达波场特征分析与应用[J]. 长江科学院院报, 2018, 35(3): 92-96. ZHOU Liming, FU Daiguang, XIAO Guoqiang, et al. Characteristics of ground penetrating radar profile in advanced geological prediction for tunnels: analysis and application[J]. Journal of Yangtze River Scientific Research Institute, 2018, 35(3): 92-96.
[5] 张建锋, 张兴昕, 贾城珲. 地质雷达特征影像与岩溶不良地质现象的对应关系[J]. 市政技术, 2015, 33(3):163-165. ZHANG Jianfeng, ZHANG Xingxin, JIA Chenghui. Correlations between geo-radar image characteristics of hazardous geological phenomenon[J]. Journal of Municipal Technology, 2015, 33(3): 163-165.
[6] 李大心. 探地雷达方法与应用[M]. 北京: 地质出版社, 1994: 28-44.
[7] 苏涛, 侯俊敏, 车立刚. 探地雷达在岩溶区隧道超前地质预报中的应用研究[J]. 公路工程, 2018, 43(4): 53-56. SU Tao, HOU Junmin, CHE Ligang. Application of ground-penetrating radar in the geological prediction of tunnel in Karst area[J]. Highway Engineering, 2018, 43(4): 53-56.
[8] 袁明德. 探地雷达检测中如何计算速度[J]. 物探与化探, 2003, 27(3): 220-222. YUAN Mingde. The speed calculation in ground-penetrating radar detection[J]. Geophysical and Geochemical Exploration, 2003, 27(3): 220-222.
[9] 谭绍泉, 刘泰生, 徐锦玺, 等. 地质雷达技术在表层结构调查中的应用与研究[J]. 石油物探, 2003, 42(1): 59-62. TAN Shaoquan, LIU Taisheng, XU Jinxi, et al. Application of ground penetrating radar technology in investigation of surface structure[J]. Geophysical Prospecting for Petroleum, 2003, 42(1): 59-62.
[10] 代高飞, 夏才初, 毛海河. 地质雷达在隧道超前预报中的应用[J]. 西部探矿工程, 2004, 16(9): 116-118.
[11] 方建立, 应松, 贾进. 地质雷达在公路隧道超前地质预报中的应用[J]. 中国岩溶, 2005, 24(2): 160-163. FANG Jianli, YING Song, JIA Jin. Application of GPR in geological forecast for highway tunnels[J]. Carsologica Sinica, 2005, 24(2): 160-163.
[12] 石明, 冯德山, 戴前伟. 综合物探方法在堤防质量检测中的应用[J]. 地球物理学进展, 2006, 21(4): 1328-1331. SHI Ming, FENG Deshan, DAI Qianwei. Application of integrated geophysical method in quality detection of dikes[J]. Progress in Geophysics, 2006, 21(4): 1328-1331.
[13] 李晓轩. 隧道超前探测的雷达数值模拟及工程应用[D]. 郑州: 华北水利水电大学, 2023. LI Xiaoxuan. Numerical radar simulation of tunnel overdetection and engineering applications[D]. Zhengzhou: North China University of Water Resources and Electric Power, 2023.
[14] 刘新荣, 刘永权, 杨忠平, 等. 基于地质雷达的隧道综合超前预报技术[J]. 岩土工程学报, 2015, 37(增刊2): 51-56. LIU Xinrong, LIU Yongquan, YANG Zhongping, et al. Synthetic advanced geological prediction technology for tunnels based on GPR[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(Suppl.2): 51-56.
[15] 张崇民, 张凤凯, 李尧. 隧道施工不良地质探地雷达超前探测全波形反演研究[J]. 隧道建设(中英文), 2019, 39(1): 102-109. ZHANG Chongmin, ZHANG Fengkai, LI Yao. Study of full waveform inversion of advance tunnel geological prediction by ground penetrating radar[J]. Tunnel Construction, 2019, 39(1): 102-109.
[16] 解东升, 石少帅, 陈士林, 等. 高风险岩溶隧道突水突泥灾害前兆规律与应用研究[J]. 山东大学学报(工学版), 2012, 42(1): 81-86. XIE Dongsheng, SHI Shaoshuai, CHEN Shilin, et al. The precursor law of inrush of clay and water in a high-risk Karst tunnel and its application[J]. Journal of Shandong University(Engineering Science), 2012, 42(1): 81-86.
[17] 李君. 隧道超前预报GPR正演模拟与应用研究 [J]. 公路交通技术, 2023, 39(3): 122-129. LI Jun. Forward modeling and application of GPR for tunnel advanced prediction [J]. Technology of Highway and Transport, 2023, 39(3): 122-129.
[18] 孙臣生. 康家楼隧道突水突泥原因分析与处治措施 [J]. 山西交通科技, 2013(5): 51-53. SUN Chensheng. The cause analysis and treatment measures of water and mud bursting for Kangjialou Tunnel [J]. Shanxi Science & Technology of Transportation, 2013(5): 51-53.
[19] 张庆松, 王德明, 李术才, 等. 断层破碎带隧道突水突泥模型试验系统研制与应用[J]. 岩土工程学报, 2017, 39(3): 417-426. ZHANG Qingsong, WANG Deming, LI Shucai, et al. Development and application of model test system for inrush of water and mud of tunnel in fault rupture zone[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(3): 417-426.
[20] 王双龙. 八卦山隧道突水突泥段处理技术[J]. 山西交通科技, 2009(2): 54-57. WANG Shuanglong. The treatment technique of sudden water and mud for the Eight Diagrams Mountain Tunnel[J]. Shanxi Science & Technology of Communications, 2009(2): 54-57.
[21] 杨子汉, 杨小礼, 张佳华, 等. 不同饱和度下破碎软岩隧道掌子面破坏范围上限分析[J]. 中南大学学报(自然科学版), 2015, 46(6): 2267-2273. YANG Zihan, YANG Xiaoli, ZHANG Jiahua, et al. Upper bound analysis of collapsing area of tunnel face in broken soft rocks under different saturations[J]. Journal of Central South University(Science and Technology), 2015, 46(6): 2267-2273.
[22] 汪旵生. 高盖山隧道高压富水区超前帷幕注浆设计[J]. 路基工程, 2015(4): 247-251. WANG Chansheng. Design of advanced curtain grouting in high-pressure watery zone of Gaogaishan Tunnel[J]. Subgrade Engineering, 2015(4): 247-251.
[23] 景学连. 关于齐岳山隧道F11断层突水突泥案例分析[J]. 西部探矿工程, 2011, 23(9): 221-222.
[1] 丁建奇,王陈成,朱向闪,张翔,傅刚,徐敬民. 大直径隧道施工对临近建筑的作用机制[J]. 隧道与地下工程灾害防治, 2025, 7(1): 22-34.
[2] 王圣涛, 陈鹏涛, 刘爱武, 孙文昊, 张俊儒. 特大跨连续变断面隧道双导洞超前-中柱反向扩挖的施工力学行为[J]. 隧道与地下工程灾害防治, 2024, 6(4): 1-11.
[3] 李启弟, 梁庆国, 周仁, 杨家伟, 蔡遵乐. 甘青隧道初始地应力场分析及岩爆预测[J]. 隧道与地下工程灾害防治, 2024, 6(4): 50-60.
[4] 赵泽乾, 朱旻, 包小华, 杨春山, 陈湘生. 下穿码头危化品堆场的超大直径盾构隧道抗爆性能评估方法[J]. 隧道与地下工程灾害防治, 2024, 6(4): 61-71.
[5] 杨立,夏增选,娄文杰,刘杉,李奉庭,武科. 山区深埋公路隧道穿越断层破碎带施工稳定性[J]. 隧道与地下工程灾害防治, 2024, 6(3): 32-42.
[6] 田瑞端,莫冠旺,李响. 超大断面扁平结构隧道矿山法超欠挖优化控制研究[J]. 隧道与地下工程灾害防治, 2024, 6(2): 84-98.
[7] 刘向阳,罗兵兵,吴静,张学富,黄耀明,李林杰. 高地温施工隧道冰块与通风组合降温效果对比研究[J]. 隧道与地下工程灾害防治, 2024, 6(2): 66-75.
[8] 闫治国, 王紫锐, 沈奕, 刘康. 碳氢曲线下大直径盾构隧道结构热力特性[J]. 隧道与地下工程灾害防治, 2024, 6(2): 25-36.
[9] 彭益, 张文, 王汉勋, 张彬, 孙哲. 某海岛地下水封油库渗流场数值模拟[J]. 隧道与地下工程灾害防治, 2024, 6(1): 94-104.
[10] 张宁, 黄新杰, 王川, 徐彬, 张建成, 张波. 高压水射流切割混凝土试验与数值模拟[J]. 隧道与地下工程灾害防治, 2023, 5(4): 47-56.
[11] 王伟, 刘英, 庄海洋, 赵凯, 陈国兴. 考虑内部结构的大直径盾构隧道抗震性能[J]. 隧道与地下工程灾害防治, 2023, 5(3): 78-85.
[12] 孙港, 王军祥, 孟祥竹, 郭连军, 孙杰. 基于近场动力学理论的岩石双孔爆破动态断裂行为数值模拟[J]. 隧道与地下工程灾害防治, 2023, 5(2): 42-58.
[13] 黄兴, 张炜, 殷建钢, 施皓, 张晓磊. 填埋场扩建后下穿隧道结构的安全性[J]. 隧道与地下工程灾害防治, 2023, 5(1): 55-63.
[14] 赵兴东, 窦翔, 李勇, 王立君. 基于Ventsim的地下水封洞库建造期通风方式优选[J]. 隧道与地下工程灾害防治, 2023, 5(1): 8-17.
[15] 党晓宇, 马劲松. 基于桩板组合结构等代仰拱的公路隧道加固方案[J]. 隧道与地下工程灾害防治, 2023, 5(1): 90-96.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn