Numerical simulation of radar characteristics of adverse geological structures in tunnels
GOU Xiaojun1, ZHAO Jinquan1, JI Wei1, HUA Xiaoming1, FAN Zhanfeng2
1. Sichuan Shugong Highway Engineering Test Co., Ltd., Chengdu 610100, Sichuan, China; 2. School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, Sichuan, China
Abstract: In order to accurately identify the unfavorable geological structures in tunnels through advanced geological prediction, three typical unfavorable geological structures in tunnels, namely karst, fault fracture zone and soft interlayer, were summarized. According to the combination of media, they were classified into 2 types and 4 structural models of karst, 2 types and 4 structural models of fault fracture zone, and 1 type and 3 structural models of soft interlayer. The self-compiled Python program was used for automatic modeling to establish three types of unfavorable geological structures, namely random multi-media coupling karst voids, fault fracture zones and weak interlayers. The Python program automatically called GprMax to numerically simulate the radar characteristics of the three types of unfavorable geological bodies. The results showed that the electromagnetic waves generated by the geological radar would produce secondary pseudo-geological anomalies in water; in the model where water was mixed with other media, weak reflections would appear in the area without anomalies; the karst cave presented the characteristics of "quadratic curve type", the fracture zone presented the characteristics of "strip-shaped" and the soft interlayer presented the characteristics of "stratification fault type". Combined with the actual situation of several typical tunnels of a certain highway, the above-mentioned simulated image features were applied to actual engineering through the detection of the above-mentioned typical unfavorable geological bodies by geological radar, and the results were consistent.
苟晓军,赵金泉,季玮,花晓鸣,范占锋. 隧道不良地质构造雷达特征数值模拟[J]. 隧道与地下工程灾害防治, 2025, 7(1): 68-82.
GOU Xiaojun, ZHAO Jinquan, JI Wei, HUA Xiaoming, FAN Zhanfeng. Numerical simulation of radar characteristics of adverse geological structures in tunnels. Hazard Control in Tunnelling and Underground Engineering, 2025, 7(1): 68-82.
[1] 张小宝, 司富安, 段世委, 等. 深埋水工长隧洞主要工程地质问题与勘察经验[J]. 水利规划与设计, 2021(12): 55-60. ZHANG Xiaobao, SI Fuan, DUAN Shiwei, et al. Main engineering geological problems and survey experience of deep buried hydraulic long tunnel[J]. Water Resources Planning and Design, 2021(12): 55-60. [2] 何发亮, 吴德胜, 郭如军, 等. 隧道施工地质灾害与致灾构造及其致灾模式[M]. 成都: 西南交通大学出版社, 2015: 38-52. [3] 张会刚, 张广泽, 毛邦燕. 沪昆客专小高山隧道突水突泥及致灾原因探析[J]. 铁道工程学报, 2016, 33(8): 66-70. ZHANG Huigang, ZHANG Guangze, MAO Bangyan. Mechanism analysis and water and mud breakout in the Xiaogao Mountain Tunnel in Shanghai-Kunming Passenger Dedicated Railway[J]. Journal of Railway Engineering Society, 2016, 33(8): 66-70. [4] 周黎明, 付代光, 肖国强, 等. 隧道超前地质预报中的地质雷达波场特征分析与应用[J]. 长江科学院院报, 2018, 35(3): 92-96. ZHOU Liming, FU Daiguang, XIAO Guoqiang, et al. Characteristics of ground penetrating radar profile in advanced geological prediction for tunnels: analysis and application[J]. Journal of Yangtze River Scientific Research Institute, 2018, 35(3): 92-96. [5] 张建锋, 张兴昕, 贾城珲. 地质雷达特征影像与岩溶不良地质现象的对应关系[J]. 市政技术, 2015, 33(3):163-165. ZHANG Jianfeng, ZHANG Xingxin, JIA Chenghui. Correlations between geo-radar image characteristics of hazardous geological phenomenon[J]. Journal of Municipal Technology, 2015, 33(3): 163-165. [6] 李大心. 探地雷达方法与应用[M]. 北京: 地质出版社, 1994: 28-44. [7] 苏涛, 侯俊敏, 车立刚. 探地雷达在岩溶区隧道超前地质预报中的应用研究[J]. 公路工程, 2018, 43(4): 53-56. SU Tao, HOU Junmin, CHE Ligang. Application of ground-penetrating radar in the geological prediction of tunnel in Karst area[J]. Highway Engineering, 2018, 43(4): 53-56. [8] 袁明德. 探地雷达检测中如何计算速度[J]. 物探与化探, 2003, 27(3): 220-222. YUAN Mingde. The speed calculation in ground-penetrating radar detection[J]. Geophysical and Geochemical Exploration, 2003, 27(3): 220-222. [9] 谭绍泉, 刘泰生, 徐锦玺, 等. 地质雷达技术在表层结构调查中的应用与研究[J]. 石油物探, 2003, 42(1): 59-62. TAN Shaoquan, LIU Taisheng, XU Jinxi, et al. Application of ground penetrating radar technology in investigation of surface structure[J]. Geophysical Prospecting for Petroleum, 2003, 42(1): 59-62. [10] 代高飞, 夏才初, 毛海河. 地质雷达在隧道超前预报中的应用[J]. 西部探矿工程, 2004, 16(9): 116-118. [11] 方建立, 应松, 贾进. 地质雷达在公路隧道超前地质预报中的应用[J]. 中国岩溶, 2005, 24(2): 160-163. FANG Jianli, YING Song, JIA Jin. Application of GPR in geological forecast for highway tunnels[J]. Carsologica Sinica, 2005, 24(2): 160-163. [12] 石明, 冯德山, 戴前伟. 综合物探方法在堤防质量检测中的应用[J]. 地球物理学进展, 2006, 21(4): 1328-1331. SHI Ming, FENG Deshan, DAI Qianwei. Application of integrated geophysical method in quality detection of dikes[J]. Progress in Geophysics, 2006, 21(4): 1328-1331. [13] 李晓轩. 隧道超前探测的雷达数值模拟及工程应用[D]. 郑州: 华北水利水电大学, 2023. LI Xiaoxuan. Numerical radar simulation of tunnel overdetection and engineering applications[D]. Zhengzhou: North China University of Water Resources and Electric Power, 2023. [14] 刘新荣, 刘永权, 杨忠平, 等. 基于地质雷达的隧道综合超前预报技术[J]. 岩土工程学报, 2015, 37(增刊2): 51-56. LIU Xinrong, LIU Yongquan, YANG Zhongping, et al. Synthetic advanced geological prediction technology for tunnels based on GPR[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(Suppl.2): 51-56. [15] 张崇民, 张凤凯, 李尧. 隧道施工不良地质探地雷达超前探测全波形反演研究[J]. 隧道建设(中英文), 2019, 39(1): 102-109. ZHANG Chongmin, ZHANG Fengkai, LI Yao. Study of full waveform inversion of advance tunnel geological prediction by ground penetrating radar[J]. Tunnel Construction, 2019, 39(1): 102-109. [16] 解东升, 石少帅, 陈士林, 等. 高风险岩溶隧道突水突泥灾害前兆规律与应用研究[J]. 山东大学学报(工学版), 2012, 42(1): 81-86. XIE Dongsheng, SHI Shaoshuai, CHEN Shilin, et al. The precursor law of inrush of clay and water in a high-risk Karst tunnel and its application[J]. Journal of Shandong University(Engineering Science), 2012, 42(1): 81-86. [17] 李君. 隧道超前预报GPR正演模拟与应用研究 [J]. 公路交通技术, 2023, 39(3): 122-129. LI Jun. Forward modeling and application of GPR for tunnel advanced prediction [J]. Technology of Highway and Transport, 2023, 39(3): 122-129. [18] 孙臣生. 康家楼隧道突水突泥原因分析与处治措施 [J]. 山西交通科技, 2013(5): 51-53. SUN Chensheng. The cause analysis and treatment measures of water and mud bursting for Kangjialou Tunnel [J]. Shanxi Science & Technology of Transportation, 2013(5): 51-53. [19] 张庆松, 王德明, 李术才, 等. 断层破碎带隧道突水突泥模型试验系统研制与应用[J]. 岩土工程学报, 2017, 39(3): 417-426. ZHANG Qingsong, WANG Deming, LI Shucai, et al. Development and application of model test system for inrush of water and mud of tunnel in fault rupture zone[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(3): 417-426. [20] 王双龙. 八卦山隧道突水突泥段处理技术[J]. 山西交通科技, 2009(2): 54-57. WANG Shuanglong. The treatment technique of sudden water and mud for the Eight Diagrams Mountain Tunnel[J]. Shanxi Science & Technology of Communications, 2009(2): 54-57. [21] 杨子汉, 杨小礼, 张佳华, 等. 不同饱和度下破碎软岩隧道掌子面破坏范围上限分析[J]. 中南大学学报(自然科学版), 2015, 46(6): 2267-2273. YANG Zihan, YANG Xiaoli, ZHANG Jiahua, et al. Upper bound analysis of collapsing area of tunnel face in broken soft rocks under different saturations[J]. Journal of Central South University(Science and Technology), 2015, 46(6): 2267-2273. [22] 汪旵生. 高盖山隧道高压富水区超前帷幕注浆设计[J]. 路基工程, 2015(4): 247-251. WANG Chansheng. Design of advanced curtain grouting in high-pressure watery zone of Gaogaishan Tunnel[J]. Subgrade Engineering, 2015(4): 247-251. [23] 景学连. 关于齐岳山隧道F11断层突水突泥案例分析[J]. 西部探矿工程, 2011, 23(9): 221-222.