Please wait a minute...
 
隧道与地下工程灾害防治  2021, Vol. 3 Issue (1): 58-67    DOI: 10.19952/j.cnki.2096-5052.2021.01.07
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
富水裂隙岩体注浆材料适用性现场试验研究
王纪伟1,张连震2*,张庆松3,杨旆3,陈新3,王建辉1,韩子川2,王洪超2,孙子正4,屠文锋4
1. 中铁十九局集团第五工程有限公司, 辽宁 大连 116600;2. 中国石油大学(华东)储运与建筑工程学院, 山东 青岛 266580;3. 山东大学岩土与结构工程研究中心, 山东 济南 250061;4. 山东大学齐鲁交通学院, 山东 济南 250002
Field test research on applicability of grout materials in water-rich fractured rock grouting engineering
WANG Jiwei1, ZHANG Lianzhen2*, ZHANG Qingsong3, YANG Pei3, CHEN Xin3, WANG Jianhui1,HAN Zichuan2, WANG Hongchao2, SUN Zizheng4, TU Wenfeng4
1. The 5th Engineering Co., Ltd., China Railway 19th Bureau Group, Dalian 116600, Liaoning, China;
2. College of Pipeline and Civil Engineering, China University of Petroleum, Qingdao 266580, Shandong, China;
3. Geotechnical and Structural Engineering Research Center, Shandong University, Jinan 250061, Shandong, China;
4.School of Qilu Transportation, Shandong University, Jinan 250002, Shandong, China
下载:  PDF (11520KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 依托青岛地铁富水裂隙岩体注浆堵水实际工程案例,开展注浆材料适用性现场试验,研究了0.2 L·min-1·m-1及0.01 L·min-1·m-1两种检查孔出水量标准要求下普通水泥浆液、水泥-水玻璃浆液、超细水泥浆液的适用性,提出了与不同标准要求相匹配的富水裂隙岩体堵水注浆材料建议,通过钻孔电视、实际开挖验证等手段验证了注浆材料的适用性。研究结果表明:单纯采用普通水泥浆液难以满足无水作业要求(钻孔出水量不超过0.01 L·min-1·m-1),但是经过重复多次注浆后,钻孔出水量可满足不超过0.2 L·min-1·m-1的要求;水泥-水玻璃浆液凝胶时间短,可有效限制浆液扩散范围,通过普通水泥浆液与水泥-水玻璃浆液的配合使用,其注浆效果要显著优于普通水泥单液浆;超细水泥浆液颗粒细度低,可有效充填富水裂隙岩体中的微裂隙空间,提高隧道围岩的堵水效能,采用普通水泥浆液、水泥-水玻璃浆液、超细水泥浆液开展富水裂隙岩体超前帷幕注浆,可满足隧道无水作业的要求。研究结果可为富水裂隙岩体的注浆处治设计及现场施工提供借鉴。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王纪伟
张连震
张庆松
杨旆
陈新
王建辉
韩子川
王洪超
孙子正
屠文锋
关键词:  隧道工程  富水裂隙岩体  注浆  注浆材料  现场试验    
Abstract: Relying on the actual engineering case of grouting water plugging in water-rich fractured rock of Qingdao Metro, the field test of the applicability of grouting materials was carried out. The applicability of regular cement slurry, cement-sodium silicate slurry, and superfine cement slurry under the water yield standard requirements of two inspection holes, 0.2 L·min-1·m-1 and 0.01 L·min-1·m-1, was studied. Suggestions for water plugging grouting materials in water-rich fractured rock that match the requirements of different standards were proposed. The applicability of the grouting material was verified by means of Borehole TV and actual excavation verification. Research indicated: it was difficult to meet the requirements of waterless operation by using regular cement slurry alone(the water yield from the borehole was less than 0.01 L·min-1·m-1), but after repeated grouting, the water yield from the borehole could meet the requirement of no more than 0.2 L·min-1·m-1. Cement-sodium silicate slurries had a short gel time, which could effectively limit the diffusion scope of the slurry. By coordination application of regular cement slurry and cement-sodium silicate slurry, the grouting effect was significantly better than regular cement single-liquid slurry; The superfine cement slurry had low particle size, which could effectively fill the micro-fracture space in the water-rich fractured rock and improve the water plugging efficiency of the tunnel surrounding rock. The use of regular cement slurry, cement-sodium silicate slurry and superfine cement slurry to carry out advanced curtain grouting of water-rich fractured rock could meet the requirements of tunnels waterless operation. The research results could provide a basis for the treatment design of grouting and field construction in water-rich fractured rock.
Key words:  tunnel engineering    water-rich fractured rock    grouting    grout material    field test
收稿日期:  2021-01-20      修回日期:  2021-02-22      发布日期:  2021-03-20     
中图分类号:  TU45  
基金资助: 国家重点研发计划项目(2020YFB1600500);国家自然科学基金青年项目(51909147,51909270);NSFC-山东省联合基金重点项目(U1706223)
作者简介:  王纪伟(1971— ),男,辽宁辽阳人,高级工程师,主要研究方向为隧道与地下工程实践.E-mail:597793525@qq.com. *通信作者简介:张连震(1990— ),男,山东莒县人,博士,讲师,主要研究方向为隧道与地下工程灾害防治.E-mail:zhanglianzhen@upc.edu.cn
引用本文:    
王纪伟, 张连震, 张庆松, 杨旆, 陈新, 王建辉, 韩子川, 王洪超, 孙子正, 屠文锋. 富水裂隙岩体注浆材料适用性现场试验研究[J]. 隧道与地下工程灾害防治, 2021, 3(1): 58-67.
WANG Jiwei, ZHANG Lianzhen, ZHANG Qingsong, YANG Pei, CHEN Xin, WANG Jianhui, HAN Zichuan, WANG Hongchao, SUN Zizheng, TU Wenfeng. Field test research on applicability of grout materials in water-rich fractured rock grouting engineering. Hazard Control in Tunnelling and Underground Engineering, 2021, 3(1): 58-67.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2021/V3/I1/58
[1] 钱七虎. 地下工程建设安全面临的挑战与对策[J]. 岩石力学与工程学报, 2012,31(10): 1945-1956. QIAN Qihu. Challenges faced by underground projects construction safety and countermeasures[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(10): 1945-1956.
[2] 李利平,朱宇泽,周宗青,等. 隧道突涌水灾害防突厚度计算方法及适用性评价[J]. 岩土力学,2020,41(增刊1): 41-50. LI Liping, ZHU Yuze, ZHOU Zongqing, et al. Calculation methods of rock thickness for preventing water inrush in tunnels and their applicability evaluation[J]. Rock and Soil Mechanics, 2020, 41(Suppl.1): 41-50.
[3] HAN Chenghao, WEI Chenghao, ZHANG Chenghao, et al. Numerical investigation of grout diffusion accounting for the dynamic pressure boundary condition and spatiotemporal variation in slurry viscosity[J]. International Journal of Geomechanics, 2021, 21(4): 04021018.
[4] 张连震,刘人太,张庆松,等. 软弱地层劈裂-压密注浆加固效果定量计算方法研究[J]. 岩石力学与工程学报,2018,37(5): 1169-1184. ZHANG Lianzhen, LIU Rentai, ZHANG Qingsong, et al. Calculation of reinforcement effect of fracturing-compaction grouting in soft strata[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(5):1169-1184.
[5] LI Zhipeng, ZHANG Lianzhen, CHU Yuntian, et al. Research on influence of water-cement ratio on reinforcement effect for permeation grouting in sand layer[J]. Advances in Materials Science and Engineering, 2020(Suppl.1): 1-12.
[6] 阮文军. 基于浆液粘度时变性的岩体裂隙注浆扩散模型[J]. 岩石力学与工程学报, 2005, 24(15): 2709-2714. RUAN Wenjun. Spreading model of grouting in rock mass fissures based on time-dependent behavior of viscosity of cement-based grouts[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(15): 2709-2714.
[7] 李术才,刘人太,张庆松,等. 基于黏度时变性的水泥-玻璃浆液扩散机制研究[J]. 岩石力学与工程学报, 2013, 32(12): 2415-2421. LI Shucai, LIU Rentai, ZHANG Qingsong, et al. Research on C-S slurry diffusion mechanism with time-dependent behavior of viscosity[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(12): 2415-2421.
[8] GUSTAFSON G, CLAESSON J, FRANSSON Å. Steering Parameters for Rock Grouting[J]. Journal of Applied Mathematics, 2013, 22(5): 1-9.
[9] GOTHÄLL R, STILLE H. Fracture dilation during grouting[J]. Tunnelling and Underground Space Technology, 2009, 24(2): 126-135.
[10] RAFI J Y, STILLE H. Basic mechanism of elastic jacking and impact of fracture aperture change on grout spread, transmissivity and penetrability[J]. Tunnelling and Underground Space Technology, 2015, 49: 174-187.
[11] 李术才, 孙子正, 刘人太, 等. 基于裂隙动水注浆的水泥-水玻璃浆液相界面特征研究[J]. 岩石力学与工程学报, 2013, 32(8): 1640-1646. LI Shucai, SUN Zizheng, LIU Rentai, et al. Research on phase interface characteristics of cement-silicate grout based on crack grouting with dynamic water[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(8): 1640-1646.
[12] 刘健,刘人太,张霄,等.水泥浆液裂隙注浆扩散规律模型试验与数值模拟[J]. 岩石力学与工程学报,2012, 31(12): 2445-2452. LIU Jian, LIU Rentai, ZHANG Xiao, et al. Diffusion law model test and numerical simulation of cement fracture grouting[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(12): 2445-2452.
[13] 李术才,张霄,张庆松,等. 地下工程涌突水注浆止水浆液扩散机制和封堵方法研究[J]. 岩石力学与工程学报, 2011, 30(12): 2377-2396. LI Shucai, ZHANG Xiao, ZHANG Qingsong, et al. Research on mechanism of grout diffusion of dynamic grouting and plugging method in water inrush of underground engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(12): 2377-2396.
[14] KAYABASI A, GOKCEOGLU C. An assessment on permeability and grout take of limestone: a case study at Mut Dam, Karaman, Turkey[J]. Water, 2019, 11(12): 2649.
[15] 张民庆, 孙国庆, 彭峰. 铁路隧道地表垂直注浆技术研究与应用[J]. 铁道工程学报, 2017, 34(3): 41-45. ZHANG Minqing, SUN Guoqing, PENG Feng. Study and application of the surface vertical grouting technology on the railway tunnel[J]. Journal of Railway Engineering Society, 2017, 34(3): 41-45.
[16] 张健,李术才,张乾青,等. 覆盖型岩溶地基注浆处理与效果检测分析[J]. 建筑结构学报, 2017, 38(9): 167-173. ZHANG Jian, LI Shucai, ZHANG Qianqing, et al. Grouting treatment of foundation in covered karst region and effect detection analysis[J]. Journal of Building Structures, 2017, 38(9): 167-173.
[17] 国家建筑材料工业局.硅酸盐水泥、普通硅酸盐水泥: GB175—1999 [S]. 北京:中国计划出版社, 1999.
[18] 张连震. 地铁穿越砂层注浆扩散与加固机理及工程应用[D]. 济南:山东大学, 2017. ZHANG Lianzhen. Study on penetration and reinforce-ment mechanism of grouting in sand layer disclosed by subway tunnel and its application[D]. Jinan: Shandong University, 2017.
[19] 李术才,韩伟伟,张庆松,等. 地下工程动水注浆速凝浆液黏度时变特性研究[J]. 岩石力学与工程学报, 2013, 32(1): 1-7. LI Shucai, HAN Weiwei, ZHANG Qingsong, et al. Research on time-dependent behavior of viscosity of fast curing grouts in underground construction grouting[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(1): 1-7.
[20] 李术才,刘人太,张庆松,等. 基于黏度时变性的水泥-玻璃浆液扩散机制研究[J]. 岩石力学与工程学报, 2013, 32(12): 2415-2421. LI Shucai, LIU Rentai, ZHANG Qingsong, et al. Research on C-S slurry diffusion mechanism with Time-dependent behavior of viscosity[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(12): 2415-2421.
[21] 迟建平. 超细水泥注浆在青岛地铁隧道初期支护渗漏水治理中的试验研究[J]. 隧道建设,2015, 35(8): 759-765. CHI Jianping. Experimental study on control of water leakage of primary support of tunnel of Qingdao metro by micro-cement grouting[J]. Tunnel Construction, 2015, 35(8): 759-765.
[22] 中华人民共和国住房和城乡建设部. 建筑与市政工程地下水控制技术规范 JGJ 111—2016[S]. 北京: 中国建筑工业出版社, 2017.
[23] 李相辉,张庆松,张霄,等.水泥浆析水性能试验研究[J]. 建筑材料学报, 2018, 21(1): 8-14. LI Xianghui, ZHANG Qingsong, ZHANG Xiao, et al. Research on water-bleeding property of cement slurry[J]. Journal of Building Materials, 2018, 21(1): 8-14.
[1] 张亮亮. 纵向排烟V形坡隧道火灾烟流特性现场火灾试验研究[J]. 隧道与地下工程灾害防治, 2023, 5(2): 71-79.
[2] 王建圣, 蒋志斌, 李丽超. 隧道岩体贯通节理面注浆加固力学响应特征[J]. 隧道与地下工程灾害防治, 2023, 5(2): 80-88.
[3] 韩兴博, 陈子明, 苏恩杰, 梁晓明, 宋桂峰, 叶飞. 盾构隧道围岩压力分布规律及作用模式[J]. 隧道与地下工程灾害防治, 2022, 4(4): 34-43.
[4] 赵旭伟. 软土地层盾构下穿铁路枢纽沉降规律及施工控制[J]. 隧道与地下工程灾害防治, 2022, 4(2): 59-65.
[5] 胡瑶瑶, 王凯, 马川义, 何灵垚, 李鹏, 熊俊成, 王成乾. 海底隧道注浆水泥-水玻璃浆液黏度时变特性[J]. 隧道与地下工程灾害防治, 2022, 4(2): 90-97.
[6] 周勇, 李召峰, 左志武, 王川, 王钰鑫, 林春金, 张新, 张乾青, 姚望, 王凯. 桩侧注浆提升粉质黏土地层既有桩基承载力试验研究[J]. 隧道与地下工程灾害防治, 2022, 4(1): 38-47.
[7] 房倩, 杜建明, 王赶, 杨晓旭. 模型边界对圆形隧道开挖引起地表沉降的影响分析[J]. 隧道与地下工程灾害防治, 2022, 4(1): 10-17.
[8] 张姣龙,高一民,张建,周浩,潘野,柯磊, 柳献. 一种模拟盾构刀盘破岩过程的模型试验设计原理和方法[J]. 隧道与地下工程灾害防治, 2021, 3(4): 20-28.
[9] 郭新新,朱安龙,王万平,汪波,王智佼,王振宇. 高应力炭质板岩隧道大变形特征及其机理分析[J]. 隧道与地下工程灾害防治, 2021, 3(4): 29-39.
[10] 张鸿勇, 张艳杰, 刘春, 施斌, 曹政. 基于离散元孔隙密度流法的地铁隧道收敛变形注浆整治分析[J]. 隧道与地下工程灾害防治, 2021, 3(3): 100-110.
[11] 宋瑞霞,赵永虎,米维军,韩侃,蒋育华. 帷幕注浆在富水大跨度黄土隧道中的应用[J]. 隧道与地下工程灾害防治, 2021, 3(2): 43-48.
[12] 高阳,董威,曹甲甲,骆建军. 长距离小间距管廊施工对既有区间盾构隧道的影响[J]. 隧道与地下工程灾害防治, 2021, 3(2): 77-85.
[13] 刘立鹏,王彦兵,宋倩. 水工有压隧洞衬砌启裂水头及围岩联合承载影响分析[J]. 隧道与地下工程灾害防治, 2020, 2(4): 52-58.
[14] 叶飞,王坚,田崇明,何彪,赵猛,韩兴博,李永健. 隧道排水管结晶堵塞病害研究现状与防治技术[J]. 隧道与地下工程灾害防治, 2020, 2(3): 13-22.
[15] 李鹏飞,刘宏翔,赵勇,刘建友,王帆. 隧道穿越断层破碎带防突水最小安全厚度及其影响因素[J]. 隧道与地下工程灾害防治, 2020, 2(3): 77-84.
[1] QIAN Qihu. Scientific use of the urban underground space to construction the harmonious livable and beautiful city[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 1 -7 .
[2] DENG Mingjiang, LIU Bin. Challenges, countermeasures and development direction of geological forward-prospecting for TBM cluster tunneling in super-long tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 8 -19 .
[3] DING Xiuli, ZHANG Yuting, ZHANG Chuanjian, YAN Tianyou, HUANG Shuling. Review on countermeasures and their adaptability evaluation to tunnels crossing active faults[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 20 -35 .
[4] JIAO Yuyong, ZHANG Weishe, OU Guangzhao, ZOU Junpeng, CHEN Guanghui. Review of the evolution and mitigation of the water-inrush disaster in drilling-and-blasting excavated deep-buried tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 36 -46 .
[5] ZHANG Qingsong, ZHANG Lianzhen, LI Peng, FENG Xiao. New progress in grouting reinforcement theory of water-rich soft stratum in underground engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 47 -57 .
[6] XIA Kaiwen, XU Ying, CHEN Rong. Dynamic tests of rocks subjected to simulated deep underground environments[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 58 -75 .
[7] HONG Kairong. Study on rock breaking and wear of TBM hob in high-strength high-abrasion stratum[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 76 -85 .
[8] TAN Zhongsheng. Application experimental study of high-strength lattice girders with heat treatment in tunnel engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 86 -92 .
[9] CHEN Jianxun, LUO Yanbin. The stability of structure and its control technology for lager-span loess tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 93 -101 .
[10] JING Hongwen, YU Liyuan, SU Haijian, GU Jincai, YIN Qian. Development and application of catastrophic experiment system for water inrush in surrounding rock of deep tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 102 -110 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn