Please wait a minute...
 
隧道与地下工程灾害防治
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
盾构隧道围岩压力分布规律及作用模式
韩兴博1,陈子明1,苏恩杰1,梁晓明1,宋桂峰2,叶飞1*
(1.长安大学公路学院,陕西 西安 710064;2.云南腊满高速公路有限公司,云南 西双版纳 666300)
Preliminary study on the distribution law and action mode of surrounding rock pressure of shield tunnel
HAN Xingbo1, CHEN Ziming1, SU Enjie1, LIANG Xiaoming1, SONG Guifeng2, YE Fei1*
(1. School of Highway Engineering, Chang'an University, Xi'an 710064, Shaanxi, China; 2. Yunnan Laman Expressway Co., Ltd., Xishuangbanna 666300, Yunnan, China)
下载:  PDF (4385KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 目前我国的盾构隧道结构设计中围岩压力取值多采用土柱法或太沙基公式,此类公式在新奥法隧道中有较好应用,但是其对盾构隧道围岩压力计算的适用性还有待进一步研究。通过对比23处盾构法隧道与44处新奥法隧道围岩压力的现场测试统计数据,研究盾构隧道围岩压力与埋深、洞径、地层类别之间的联系,分析了盾构隧道围岩压力与新奥法隧道围岩压力之间的区别,进一步厘清了盾构法隧道围岩压力的特性。通过计算分析,探讨各围岩压力计算公式对盾构法隧道的适用性。分析发现:盾构隧道围岩压力表现出围岩压力随埋深增大的规律,且黄土与粉质黏土地层隧道的围岩压力明显小于含有砂性土的地层。新奥法隧道的围岩压力随埋深及开挖洞径的增加,呈现出较为明显的增大趋势。盾构法与新奥法隧道围岩压力差异较大,受盾构法衬砌支护更为及时的影响,盾构隧道的围岩压力明显大于新奥法隧道,围岩压力沿洞周的分布也更加均匀,盾构隧道的围岩压力更倾向属于形变压力。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
韩兴博
陈子明
苏恩杰
梁晓明
宋桂峰
叶飞
关键词:  隧道工程  盾构隧道  围岩压力  作用模式  现场测试统计    
Abstract: The value of surrounding rock pressure for the design of shield tunnels in China mostly adopts the soil column method or the Terzaghi formula at present. Such formula has good application in the New Austria Tunnelling Method(NATM)tunnel, but its applicability to the calculation of surrounding rock pressure of shield tunnel needs further study. By comparing the field test statistics of the surrounding rock pressure of 23 shield tunnels and 44 NATM tunnels, the relationship between the surrounding rock pressure of shield tunnels and the buried depth, tunnel diameter and stratum type was studied. The difference between the surrounding rock pressure of shield tunnels and the NATM tunnels is analyzed, and the characteristics of the surrounding rock pressure of shield tunnels were further clarified.  The applicability of each surrounding rock pressure calculation formula to the shield tunnel was discussed through calculation and analysis. It was found that the surrounding rock pressure of the shield tunnel increased with the buried depth, and the surrounding rock pressure of tunnels in loess and silty clay stratum was obviously less than that in stratum containing sandy soil. The surrounding rock pressure of NATM Tunnel showed an obvious increasing trend with the increase of buried depth and excavation hole diameter. The surrounding rock pressure of the shield tunnel and NATM tunnel was quite different. Due to the timelier lining support of the shield tunnel, the surrounding rock pressure of the shield tunnel was significantly higher than that of the NATM tunnel, and the distribution of surrounding rock pressure along the tunnel perimeter was more uniform. The surrounding rock pressure of the shield tunnel was more inclined to belong to deformation pressure.
Key words:  tunnel engineering    shield tunnel    surrounding rock pressure    mode of action    field test statistics
收稿日期:  2022-03-21      修回日期:  2022-04-20      发布日期:  2022-04-20     
中图分类号:  U451.4  
基金资助: 

国家自然科学基金青年资助项目(52108360);云南省交通运输厅资助项目(云交科教便[2019]59号);中国博士后科学基金资助项目(2020M683398

通讯作者:  叶飞(1977—),男,陕西石泉人,博士,教授,博士生导师,主要研究方向为隧道及地下结构安全。    E-mail:  xianyefei@126.com
作者简介:  韩兴博(1991—),男,陕西岐山人,博士,讲师,主要研究方向为盾构隧道围岩-结构力学响应。E-mail: xingbo.han@chd.edu.cn.
引用本文:    
韩兴博, 陈子明, 苏恩杰, 梁晓明, 宋桂峰, 叶飞. 盾构隧道围岩压力分布规律及作用模式[J]. 隧道与地下工程灾害防治, 10.19952/j.cnki.2096-5052.2022.04.05.
HAN Xingbo, CHEN Ziming, SU Enjie, LIANG Xiaoming, SONG Guifeng, YE Fei. Preliminary study on the distribution law and action mode of surrounding rock pressure of shield tunnel. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1-.
链接本文:  
[1] 魏纲, 徐天宝, 张治国. 复杂应力路径下波纹钢加固盾构隧道数值分析[J]. 隧道与地下工程灾害防治, 2023, 5(2): 24-32.
[2] 王智, 刘祥勇, 朱先发, 洪小星, 沈一鸣, 张冰利. 小曲率半径隧道施工对盾构管片结构影响[J]. 隧道与地下工程灾害防治, 2023, 5(1): 45-54.
[3] 韩兴博, 陈子明, 苏恩杰, 梁晓明, 宋桂峰, 叶飞. 盾构隧道围岩压力分布规律及作用模式[J]. 隧道与地下工程灾害防治, 2022, 4(4): 34-43.
[4] 喻伟, 林赞权, 朱彬彬, 汪元冶, 丁文其, 乔亚飞, 张晓东, 龚琛杰. 盾构隧道防水密封垫材料的高温老化后性能[J]. 隧道与地下工程灾害防治, 2022, 4(4): 52-58.
[5] 赵辰洋, 罗毛毛, 邱静怡, 倪芃芃, 赵锋烽. 盾构隧道施工引起地层变形预测方法综述[J]. 隧道与地下工程灾害防治, 2022, 4(3): 31-46.
[6] 丁智, 李鑫家, 张霄. 基于机器学习的盾构掘进地表变形预测研究与展望[J]. 隧道与地下工程灾害防治, 2022, 4(3): 1-9.
[7] 吕玺琳, 赵庾成, 曾盛. 砂层中盾构隧道开挖面稳定性物理模型试验[J]. 隧道与地下工程灾害防治, 2022, 4(3): 67-76.
[8] 潘秋景, 李晓宙, 黄杉, 汪来, 王树英, 方国光. 机器学习在盾构隧道智能施工中的应用——综述与展望[J]. 隧道与地下工程灾害防治, 2022, 4(3): 10-30.
[9] 张治国, 程志翔, 陈杰, 吴钟腾, 李云正. 盾构隧道接缝渗漏水诱发既有管线变形模型试验[J]. 隧道与地下工程灾害防治, 2022, 4(3): 77-91.
[10] 刘祥勇, 张鑫, 王军, 赵涛宁, 朱先发. 盾构施工对邻近建筑物群结构影响评价[J]. 隧道与地下工程灾害防治, 2022, 4(3): 99-106.
[11] 许有俊, 王智广, 张旭, 郭飞, 高胜雷, 杨昆. 小转弯半径盾构隧道施工引起的地层变形特征[J]. 隧道与地下工程灾害防治, 2022, 4(2): 11-18.
[12] 陈峰军, 宗军良, 王祺, 禹海涛. 地面出入式超浅埋盾构隧道静力响应模型试验[J]. 隧道与地下工程灾害防治, 2022, 4(2): 66-72.
[13] 黄昕, 谷冠思, 张子新, 李昀. 考虑渗流的泥水平衡盾构隧道稳定性数值模拟[J]. 隧道与地下工程灾害防治, 2022, 4(2): 28-38.
[14] 马少俊, 李鑫家, 王乔坎, 丁智. 某深基坑开挖对邻近既有盾构隧道影响实测分析[J]. 隧道与地下工程灾害防治, 2022, 4(1): 86-94.
[15] 房倩, 杜建明, 王赶, 杨晓旭. 模型边界对圆形隧道开挖引起地表沉降的影响分析[J]. 隧道与地下工程灾害防治, 2022, 4(1): 10-17.
[1] QIAN Qihu. Scientific use of the urban underground space to construction the harmonious livable and beautiful city[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 1 -7 .
[2] DENG Mingjiang, LIU Bin. Challenges, countermeasures and development direction of geological forward-prospecting for TBM cluster tunneling in super-long tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 8 -19 .
[3] DING Xiuli, ZHANG Yuting, ZHANG Chuanjian, YAN Tianyou, HUANG Shuling. Review on countermeasures and their adaptability evaluation to tunnels crossing active faults[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 20 -35 .
[4] JIAO Yuyong, ZHANG Weishe, OU Guangzhao, ZOU Junpeng, CHEN Guanghui. Review of the evolution and mitigation of the water-inrush disaster in drilling-and-blasting excavated deep-buried tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 36 -46 .
[5] ZHANG Qingsong, ZHANG Lianzhen, LI Peng, FENG Xiao. New progress in grouting reinforcement theory of water-rich soft stratum in underground engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 47 -57 .
[6] XIA Kaiwen, XU Ying, CHEN Rong. Dynamic tests of rocks subjected to simulated deep underground environments[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 58 -75 .
[7] HONG Kairong. Study on rock breaking and wear of TBM hob in high-strength high-abrasion stratum[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 76 -85 .
[8] TAN Zhongsheng. Application experimental study of high-strength lattice girders with heat treatment in tunnel engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 86 -92 .
[9] CHEN Jianxun, LUO Yanbin. The stability of structure and its control technology for lager-span loess tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 93 -101 .
[10] JING Hongwen, YU Liyuan, SU Haijian, GU Jincai, YIN Qian. Development and application of catastrophic experiment system for water inrush in surrounding rock of deep tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 102 -110 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn