Please wait a minute...
 
隧道与地下工程灾害防治  2025, Vol. 7 Issue (4): 65-75    DOI: 10.19952/j.cnki.2096-5052.2025.04.06
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
水蚀-干湿循环作用下膏溶角砾岩孔隙结构劣化特征与扰动状态模型
朱爱虹
福州港后铁路有限公司, 福建 福州 350019
Degradation characteristics of pore structure and disturbance state model of gypsum breccia under the combined effect of water erosion and wet-dry
ZHU Aihong
Fuzhou Ganghou Railway Co., Ltd., Fuzhou 350019, Fujian, China
下载:  PDF (11413KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为揭示地下工程中膏溶角砾岩的水蚀-干湿循环耦合劣化机理,以山西某隧道工程存在的膏溶角砾岩为研究对象,对膏溶角砾岩试样进行10次干湿循环处理,系统分析干湿循环作用下膏溶角砾岩的表观劣化特征与吸水-溶蚀演化特征。基于核磁共振技术,对干湿循环过程中膏溶角砾岩的孔隙结构劣化特征进行表征,通过对比静水条件与流速为10 L/h的流动水条件下膏溶角砾岩试样的干湿循环劣化形态差异,探讨水流对膏溶角砾岩干湿循环劣化过程的附加劣化效应。在此基础上,结合试样P波速度测试与孔隙率测试结果,构建基于扰动状态概念理论的膏溶角砾岩干湿劣化模型。结果表明:干湿循环作用会降低膏溶角砾岩不同材料分区之间的黏结强度,而水流会加速膏溶角砾岩试样中石膏矿物的溶解并破坏浅层孔隙结构,干湿循环作用与水力侵蚀共同导致了膏溶角砾岩的劣化;P波速度的衰减与石膏角砾岩孔隙结构的发育之间存在显著相关性,提出的基于扰动状态概念的干湿劣化模型可以准确描述膏溶角砾岩在不同水流环境下、干湿循环作用下的力学劣化特征。研究成果可为膏溶角砾岩地层隧道的工程设计提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱爱虹
关键词:  膏溶角砾岩  水蚀-干湿循环  力学劣化  核磁共振技术  P波速度  扰动状态概念    
Abstract: To reveal the coupled deterioration mechanism of water erosion and wet-dry cycling in gypsum breccia within underground engineering, gypsum breccia from a tunnel project in Shanxi Province was selected as the research object. The samples were subjected to ten wet-dry cycles, and the apparent deterioration characteristics as well as the water absorption-dissolution evolution behavior of the gypsum breccia under cyclic wet-dry conditions were systematically analyzed. Using nuclear magnetic resonance(NMR)technology, the pore structure deterioration characteristics of gypsum breccia during the wet-dry process were characterized. By comparing the deterioration morphology of samples under static water and flowing water conditions(with a flow rate of 10 L/h), the additional deterioration effect of water flow on the wet-dry deterioration process of gypsum breccia was further investigated. On this basis, a wet-dry deterioration model of gypsum breccia was developed based on the disturbed state concept(DSC)theory, combined with P-wave velocity and porosity test results. The results showed that the interfacial bonding strength between different material zones of the gypsum breccia was weakened by wet-dry cycles, while water flow was found to accelerate gypsum dissolution and deteriorate the shallow pore structure of the samples. The deterioration of gypsum breccia was jointly accelerated by the combined actions of wet-dry cycles and hydraulic erosion. A significant correlation was observed between the attenuation of P-wave velocity and the development of the pore structure in the gypsum breccia. The DSC-based wet-dry deterioration model was shown to accurately describe the mechanical deterioration behavior of gypsum breccia under different hydraulic conditions during cyclic wet-dry processes. The findings provide valuable reference data for the engineering design of tunnels in gypsum breccia strata.
Key words:  gypsum breccia    combined effect of water erosion and wet-dry    mechanical deterioration    NMR technology    P-wave velocity    disturbed state concept
发布日期:  2025-12-29     
中图分类号:  U45  
  TU45  
基金资助: 国家自然科学基金面上资助项目(52478390);福建省交通运输科技计划资助项目(2024Y037);福建省自然科学基金青创资助项目(2024J08213)
作者简介:  朱爱虹(1975— ),女,福建三明人,高级工程师,主要研究方向为隧道与地下工程. E-mail:1115944569@qq.com
引用本文:    
朱爱虹. 水蚀-干湿循环作用下膏溶角砾岩孔隙结构劣化特征与扰动状态模型[J]. 隧道与地下工程灾害防治, 2025, 7(4): 65-75.
ZHU Aihong. Degradation characteristics of pore structure and disturbance state model of gypsum breccia under the combined effect of water erosion and wet-dry. Hazard Control in Tunnelling and Underground Engineering, 2025, 7(4): 65-75.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2025/V7/I4/65
[1] 周意超, 陈从新, 刘秀敏, 等. 荆门石膏矿岩遇水软化力学特性试验研究[J]. 岩土力学, 2017, 38(10): 2847-2854. ZHOU Yichao, CHEN Congxin, LIU Xiumin, et al. Experimental study on mechanical properties of water-softening gypsum rock in Jingmen[J]. Rock and Soil Mechanics, 2017, 38(10): 2847-2854.
[2] 吴建勋, 任松, 欧阳汛, 等. 石膏质岩膨胀性及其对隧道仰拱影响研究[J]. 湖南大学学报(自然科学版), 2018, 45(1): 142-149. WU Jianxun, REN Song, OUYANG Xun, et al. Research on swelling of gypsiferous rock and its influence on invert arch of tunnel[J]. Journal of Hunan University(Natural Sciences), 2018, 45(1): 142-149.
[3] GYSEL M. Anhydrite dissolution phenomena: three case histories of anhydrite karst caused by water tunnel operation[J]. Rock Mechanics and Rock Engineering, 2002, 35(1): 1-21.
[4] 邓华锋, 周美玲, 李建林, 等. 水-岩作用下红层软岩力学特性劣化规律研究[J]. 岩石力学与工程学报, 2016, 35(增刊2): 3481-3491. DENG Huafeng, ZHOU Meiling, LI Jianlin, et al. Mechanical properties deteriorating change rule research of red-layer soft rock under water-rock interaction[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(Suppl.2): 3481-3491.
[5] 刘新荣, 李栋梁, 张梁, 等. 干湿循环对泥质砂岩力学特性及其微细观结构影响研究[J]. 岩土工程学报, 2016, 38(7): 1291-1300. LIU Xinrong, LI Dongliang, ZHANG Liang, et al. Influence of wetting-drying cycles on mechanical properties and microstructure of shaly sandstone[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(7): 1291-1300.
[6] 巩学鹏, 唐朝生, 施斌, 等. 黏性土干/湿过程中土结构演化特征研究进展[J]. 工程地质学报, 2019, 27(4): 775-793. GONG Xuepeng, TANG Chaosheng, SHI Bin, et al. Evolution of soil microstructure during drying and wetting[J]. Journal of Engineering Geology, 2019, 27(4): 775-793.
[7] 傅晏. 干湿循环水岩相互作用下岩石劣化机理研究[D]. 重庆: 重庆大学, 2010: 15-46. FU Yan. Study on water-rock interaction with the cyclic drying-wetting effect on rock[D]. Chongqing: Chongqing University, 2010: 15-46.
[8] 邓华锋, 胡安龙, 李建林, 等. 水岩作用下砂岩劣化损伤统计本构模型[J]. 岩土力学, 2017, 38(3): 631-639. DENG Huafeng, HUAnlong, LI Jianlin, et al. Statistical damage constitutive model of sandstone under water-rock interaction[J]. Rock and Soil Mechanics, 2017, 38(3): 631-639.
[9] 刘星, 唐志成, 李璐, 等. 循环干湿处理后红砂岩节理的剪切性质试验研究[J]. 岩石力学与工程学报, 2020, 39(增刊2): 3316-3325. LIU Xing, TANG Zhicheng, LI Lu, et al. Experimental study on shear properties of red sandstone joints after cyclic wetting-drying treatment[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(Suppl.2): 3316-3325.
[10] 祝艳波, 吴银亮, 余宏明, 等. 隧道石膏质围岩强度特性试验研究[J]. 长江科学院院报, 2013, 30(9): 53-58. ZHU Yanbo, WU Yinliang, YU Hongming, et al. Strength behavior of tunnel's gypsiferous surrounding rock[J]. Journal of Yangtze River Scientific Research Institute, 2013, 30(9): 53-58.
[11] 张丛林, 侯东波, 王君. 干湿循环影响下石膏质岩的强度特性及围岩分级研究[J]. 公路, 2016, 61(10): 236-240. ZHANG Conglin, HOU Dongbo, WANG Jun. Research on the strength characteristics and surrounding rock classification of gypsum rock under the influence of drying and wetting cycles[J]. Highway, 2016, 61(10): 236-240.
[12] 李亚, 余宏明, 李科, 等. 干湿循环作用下石膏岩劣化效应的试验研究[J]. 长江科学院院报, 2017, 34(3): 63-66. LI Ya, YU Hongming, LI Ke, et al. Laboratory study on degradation of gypsum rock with dry-wet cycles[J]. Journal of Yangtze River Scientific Research Institute, 2017, 34(3): 63-66.
[13] 王明芳. 干湿循环作用下石膏质岩劣化特征与机制研究[D]. 武汉:中国地质大学,2018: 29-88. WANG Mingfan. Analysis of the deterioration mechanism and characteristics of drying-wetting cycles on gypsum rock[D]. Wuhan: China University of Geosciences, 2018: 29-88.
[14] JIANG S, HUANG M, JIANG Y J, et al. NMR-based investigation on the wet-dry deterioration characteristics of gypsiferous rocks surrounding underground excavations[J]. Rock Mechanics and Rock Engineering, 2022, 55(4): 2323-2339.
[15] 魏玉峰, 聂德新. 第三系红层中石膏溶蚀特性及其对工程的影响[J]. 水文地质工程地质, 2005, 32(2): 62-64. WEI Yufeng, NIE Dexin. The speciality of gypsum dissolution of the Neogene red clay and its influence to engineering[J]. Hydrogeology and Engineering Geology, 2005, 32(2): 62-64.
[16] 吴银亮. 石膏质岩工程地质特性及其对隧道混凝土结构危害机制研究[D]. 北京: 中国地质大学, 2013: 31-61. WU Yinliang. The engineering geological characteristics of gypsum rock and the damage mechanism on tunnel concrete structure[D]. Beijing: China University of Geosciences, 2013: 31-61.
[17] SADEGHIAMIRSHAHIDI M, VITTON S J. Laboratory study of gypsum dissolution rates for an abandoned underground mine[J]. Rock Mechanics and Rock Engineering, 2019, 52(7): 2053-2066.
[18] 刘志国, 江松, 黄明, 等. 复杂地下水环境下膏溶角砾岩隧道围岩力学性质劣化研究[J]. 隧道建设(中英文), 2021, 41(7): 1150-1158. LIU Zhiguo, JIANG Song, HUANG Ming, et al. A law for degradation of mechanical properties of gypsum breccia surrounding tunnels in a complex groundwater environment[J]. Tunnel Construction, 2021, 41(7): 1150-1158.
[19] 黄彦华, 张坤博, 杨圣奇, 等. 高温后花岗岩微观特征及其对强度影响规律研究[J]. 岩石力学与工程学报, 2025, 44(2): 359-372. HUANG Yanhua, ZHANG Kunbo, YANG Shengqi, et al. Study on the microstructure characteristic and its influence on strength properties of granite specimens after high temperature treatment[J]. Chinese Journal of Rock Mechanics and Engineering, 2025, 44(2): 359-372.
[20] 谭茂金, 赵文杰. 用核磁共振测井资料评价碳酸盐岩等复杂岩性储集层[J]. 地球物理学进展, 2006, 21(2): 489-493. TAN Maojin, ZHAO Wenjie. Description of carbonate reservoirs with NMR log analysis method[J]. Progress in Geophysics, 2006, 21(2): 489-493.
[21] 宋勇军, 卢云龙, 王双龙, 等. 岩石冻融过程未冻水含量演化特征及对力学特性影响研究[J]. 岩土力学, 2025, 46(4): 1049-1059. SONG Yongjun, LU Yunlong, WANG Shuanglong, et al. Evolution characteristics of unfrozen water content and its influence on mechanical properties of rock during freeze-thaw process[J]. Rock and Soil Mechanics, 2025, 46(4): 1049-1059.
[22] XIE K N, JIANG D Y, SUN Z G, et al. NMR, MRI and AE statistical study of damage due to a low number of wetting-drying cycles in sandstone from the Three Gorges Reservoir area[J]. Rock Mechanics and Rock Engineering, 2018, 51(11): 3625-3634.
[23] LIU L, FANG Z Y, QI C C, et al. Experimental investigation on the relationship between pore characteristics and unconfined compressive strength of cemented paste backfill[J]. Construction and Building Materials, 2018, 179: 254-264.
[24] 周科平, 胡振襄, 李杰林, 等. 基于核磁共振技术的大理岩卸荷损伤演化规律研究[J]. 岩石力学与工程学报, 2014, 33(增刊2): 3523-3530. ZHOU Keping, HU Zhenxiang, LI Jielin, et al. Study on the evolution law of marble unloading damage based on NMR technology[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(Suppl.2): 3523-3530.
[25] DARLINGTON W J, RANJITH P G, CHOI S K. The effect of specimen size on strength and other properties in laboratory testing of rock and rock-like cementitious brittle materials[J]. Rock Mechanics and Rock Engineering, 2011, 44(5): 513-529.
[26] SHARMA P K, SINGH T N. A correlation between P-wave velocity, impact strength index, slake durability index and uniaxial compressive strength[J]. Bulletin of Engineering Geology and the Environment, 2008, 67(1): 17-22.
[27] DESAI B C S. Mechanicsof materials and interfaces: the disturbed state concept[M]. Boca Raton: CRC Press, 2001: 46-47.
[1] 钟浩, 张永平, 蔡先庆, 袁松, 孔庆轩, 孙浩, 郭胜. 基于多尺度地质特征增强与深度卷积网络的隧道掌子面围岩等级智能评估[J]. 隧道与地下工程灾害防治, 0, (): 1-13.
[2] 王浩赟, 张万志, 张恒, 孙岩峰, 袁铭占. 拱盖法隧道拱脚爆破围岩破坏特征与参数优化[J]. 隧道与地下工程灾害防治, 0, (): 1-13.
[3] 王立川,贺维国,张俊儒,武宏斌,蒋新强,章慧健,王文,黄林祥. 软弱破碎地层地铁车站钢管桩柱拱盖法施工力学特性及其应用[J]. 隧道与地下工程灾害防治, 2025, 7(2): 1-12.
[4] 邓稀肥,申志军,汪涛,江胜华,杨杰,李宏波. 基于直流电阻率法的旋喷桩加固正问题模拟研究[J]. 隧道与地下工程灾害防治, 2025, 7(2): 13-20.
[5] 雷文君,郭丽丽,赵旭明,邰传民,齐悦. 补风方式对地铁隧道火灾烟气控制效果的研究[J]. 隧道与地下工程灾害防治, 2025, 7(2): 31-41.
[6] 李炼然,任周洪,王斌,张权,黄灏,刘吉金,许浩宇,郭谦. 等值反磁通瞬变电磁数据的波场反变换方法及其在会泽铅锌矿区井下超前探测中的应用[J]. 隧道与地下工程灾害防治, 2025, 7(2): 51-63.
[7] 王少锋,曹翔鹏. 聚氨酯基体与细骨料组成的隧道隔震材料的力学性能试验研究[J]. 隧道与地下工程灾害防治, 2025, 7(2): 64-72.
[8] 郭建光,王星,董唱唱,薛永斌,王双庆,赵宏硕,王涵,王文虎. 浆液时效性与管片摩擦作用下管片上浮研究[J]. 隧道与地下工程灾害防治, 2025, 7(2): 73-80.
[9] 钟浩,蔡先庆,孙浩,孔庆轩,张永平. 温度影响下砂岩三轴压缩行为:加荷特性、剪切变形及预测软件研发[J]. 隧道与地下工程灾害防治, 2025, 7(2): 81-95.
[10] 王立川, 贺维国, 张俊儒, 武宏斌, 蒋新强, 章慧健, 王文, 黄林祥. 软弱破碎地层地铁车站钢管桩柱拱盖法施工力学特性及其应用[J]. 隧道与地下工程灾害防治, 0, (): 1-14.
[11] 高贤成. 基于ConDenseNet架构煤岩破坏识别模型及其优化研究[J]. 隧道与地下工程灾害防治, 0, (): 1-13.
[12] 钟建敏, 张亮亮, 何应道, 罗驰恒, 熊逸凡, 王超. 济泺路穿黄北延隧道设计关键技术[J]. 隧道与地下工程灾害防治, 0, (): 1-11.
[13] 李启弟, 梁庆国, 周仁, 杨家伟, 蔡遵乐. 甘青隧道初始地应力场分析及岩爆预测[J]. 隧道与地下工程灾害防治, 0, (): 1-14.
[14] 荆少东, 杜亦农. 地下水封洞库“三大高程”的确定方法研究[J]. 隧道与地下工程灾害防治, 0, (): 1-7.
[15] 张旭, 王红港, 王文千. 通透肋式连拱隧道围岩压力计算及敏感性分析[J]. 隧道与地下工程灾害防治, 0, (): 1-10.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn