Please wait a minute...
 
隧道与地下工程灾害防治  2019, Vol. 1 Issue (1): 76-85    
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
高强度高磨蚀地层TBM滚刀破岩与磨损研究
洪开荣1,2
1. 中铁隧道局集团有限公司, 广东 广州 511458;2. 盾构及掘进技术国家重点实验室, 河南 郑州 450001
Study on rock breaking and wear of TBM hob in high-strength high-abrasion stratum
HONG Kairong1,2
1. China Railway Tunnel Group Co. Ltd., Guangzhou 511458, Guangdong, China;
2. State Key Laboratory of Shield Machine and Boring Technology, Zhengzhou 450001, Henan, China
下载:  PDF (13972KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对引汉济渭秦岭隧洞岭南TBM工程面临的高强度高磨蚀地层TBM掘进困难、刀具消耗严重的问题,通过分析TBM前2 000 m试掘进段掘进参数与刀具消耗,提出掘进参数存在推力偏大、贯入度过大,转速较低、扭矩偏小的问题,不利于滚刀使用寿命、限制了TBM掘进速度;另外发现刀盘43#刀位附近刀具数量不足、区域耐磨性不够,刀盘刮碴不及时、刀具二次磨损严重等也是导致刀具消耗过快的原因。通过开展高强度硬岩滚刀破岩试验,发现刀刃间距在80~130 mm范围内均可实现有效破岩,但刀刃间距与贯入度比值S/p为25~30时,TBM破岩比能较低、破岩效率较高;通过开展高磨蚀地层缩尺滚刀磨损实验,发现滚刀破岩存在质量磨损速率急剧增加的临界贯入度,采用圆角刃滚刀可以有效降低滚刀磨损。研究结果可为如引汉济渭等高强度高磨蚀地层TBM刀盘刀具的设计和掘进参数的控制提供参考与借鉴。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
洪开荣
关键词:  高强度硬岩  高磨蚀地层  TBM  引汉济渭  滚刀破岩  刀具磨损    
Abstract: For the problems facing by Qinling Tunnel South TBM Project of the Hanjiang-Weihe Water Diversion, such as TBM tunneling difficulty in high-strength high-abrasion stratum and heavy cutter consumption, the tunneling parameters and cutter consumption in the first 2 000 m TBM trial tunneling section were studied to put forth problems with some tunneling parameters, including overlarge thrust, excessive penetration, small rotation speed and over-low torque, which would shorten the service life of the hob and limit TBM tunneling speed. It was found that there were not enough cutters near 43# cutter position of the cutterhead, the areal abrasion resistance was inadequate, slag was not removed off from the cutterhead in time, and the secondary wear of the cutter was serious, which all contributed to heavy cutter consumption too. The high-strength hard rock breaking test by hob indicated that rock could be broken efficiently when the cutter edge spacing ranged from 80 mm to 130 mm, but if the ratio of cutter edge spacing to penetration(S/p)was 25~30, TBM would have a lower rock-breaking specific energy and a higher rock-breaking efficiency. The scaled-down-hob wear test in high-abrasion stratum showed that there existed a critical penetration in rock breaking by hob, at which the mass loss rate would increase sharply. It was also found that using rounded-edge hob could lower the hob wear efficiently. The obtained results could provide reference and basis for design of TBM cutterhead and cutter, and control of tunneling parameter for tunneling in high-strength high-abrasion stratum in Hanjiang-Weihe Water Diversion and other projects.
Key words:  high-strength hard rock    high-abrasion stratum    TBM    Hanjing-Weihe Water Diversion, rock breaking by hob    cutter wear
收稿日期:  2018-04-23      发布日期:  2019-02-22     
中图分类号:  U455  
基金资助: 国家重点基础研究发展计划(973计划)资助项目(2014CB046906);铁总科技开发计划资助项目(2016G004-A);中隧科技创新计划资助项目(隧研合2016-03)
作者简介:  洪开荣(1965—)男,湖南攸县人,博士,教授级高工,国家“万人计划”科技创新领军人才,国务院政府特殊津贴专家,主要研究方向为隧道及地下工程施工与装备技术. E-mail:ctg_kr@vip.163.com
引用本文:    
洪开荣. 高强度高磨蚀地层TBM滚刀破岩与磨损研究[J]. 隧道与地下工程灾害防治, 2019, 1(1): 76-85.
HONG Kairong. Study on rock breaking and wear of TBM hob in high-strength high-abrasion stratum. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 76-85.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2019/V1/I1/76
[1] 《中国公路学报》编辑部. 中国隧道工程学术研究综述2015[J]. 中国公路学报, 2015, 28(5): 1-65. Editorial Department of China Journal of Highway. Review on Chinas tunnel engineering research: 2015[J]. China Journal of Highway and Transport, 2015, 28(5): 1-65.
[2] 王梦恕. 中国盾构和掘进机隧道技术现状、存在的问题及发展思路[J]. 隧道建设, 2014, 34(3): 179-187. WANG Mengshu. Tunneling by TBM/shield in China: state-of-art, problems and proposals[J]. Tunnel Construction, 2014, 34(3): 179-187.
[3] 王梦恕. 中国铁路隧道与地下空间发展概况[J]. 隧道建设, 2010, 30(4): 351-364. WANG Mengshu. An overview of development of railways, tunnels and underground works in China[J]. Tunnel Construction, 2010, 30(4): 351-364.
[4] 洪开荣. 我国隧道及地下工程发展现状与展望[J]. 隧道建设, 2015, 35(2): 95-107. HONG Kairong. State-of-art and prospect of tunnels and underground works in China[J]. Tunnel Construction, 2015, 35(2): 95-107.
[5] 万治昌, 沙明元, 周雁领. 盘形滚刀的使用与研究(1)——TB880E型掘进机在秦岭隧道施工中的应用[J]. 现代隧道技术, 2002, 39(5): 1-11. WAN Zhichang, SHA Mingyuan, ZHOU Yanling. Study on disk cutters for hard rock—application of TB880E TBM in Qinling Tunnel[J]. Modern Tunnelling Technology, 2002, 39(5): 1-11.
[6] 龚秋明, 何冠文, 赵晓豹, 等. 掘进机刀盘滚刀间距对北山花岗岩破岩效率的影响实验研究[J]. 岩土工程学报, 2015, 37(1): 54-60. GONG Qiuming, HE Guanwen, ZHAO Xiaobao, et al. Influence of different cutter spacings on rock fragmentation efficiency of Beishan granite by TBM[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(1): 54-60.
[7] 龚秋明, 周小雄, 殷丽君, 等. 基于线性切割试验碴片分析的滚刀破岩效率研究[J]. 隧道建设, 2017, 37(3): 363-368. GONG Qiuming, ZHOU Xiaoxiong, YIN Lijun, et al. Study of rock breaking efficiency of TBM disc cutter based on chips analysis of linear cutting test[J]. Tunnel Construction, 2017, 37(3): 363-368.
[8] 程永亮. TBM盘形滚刀破岩最优贯入度的数值模拟[J]. 中南大学学报(自然科学版), 2017, 48(4): 936-943. CHENG Yongliang. Numerical simulation on optimal penetration of TBM disc cutters rock fragmentation[J]. Journal of Central South University(Science and Technology), 2017, 48(4): 936-943.
[9] 张厚美. TBM盘形滚刀磨损与滚刀滑动距离关系研究[J]. 隧道建设, 2017, 37(3): 369-374. ZHANG Houmei. Research on relationship between TBM disc cutter abrasion and disc cutter slipping distance[J]. Tunnel Construction, 2017, 37(3): 369-374.
[10] 张厚美. TBM盘形滚刀重复破碎与二次磨损规律研究[J]. 隧道建设, 2016, 36(2): 131-136. ZHANG Houmei. Study on relationship between repeated cutting and secondary wear of TBM disc cutter[J]. Tunnel Construction, 2016, 36(2): 131-136.
[11] 赵海鸣, 舒标, 夏毅敏, 等. 基于磨料磨损的TBM滚刀磨损预测研究[J]. 铁道科学与工程学报, 2014, 11(4): 152-158. ZHAO Haiming, SHU Biao, XIA Yimin, et al. Study of wear prediction for TBM cutter based on abrasive wear model[J]. Journal of Railway Science and Engineering, 2014, 11(4): 152-158.
[12] 杨延栋, 陈馈, 李凤远, 等. 盘形滚刀磨损预测模型[J]. 煤炭学报, 2015, 40(6): 1290-1296. YANG Yandong, CHEN Kui, LI Fengyuan, et al. Wear prediction model of disc cutter[J]. Journal of China Coal Society, 2015, 40(6): 1290-1296.
[13] 杨延栋, 陈馈, 张兵, 等. 基于宏观能量理论与微观磨损机制的滚刀磨损量预测[J]. 隧道建设, 2015, 35(12): 1356-1360. YANG Yandong, CHEN Kui, ZHANG Bing, et al. Prediction of disc cutter wearing loss based on macro energy theory and micro wearing mechanism[J]. Tunnel Construction, 2015, 35(12): 1356-1360.
[14] 杨延栋, 陈馈, 郭璐, 等. 全断面岩石隧道掘进机滚刀磨损影响因素分析[J]. 隧道建设, 2016, 36(11): 1394-1400. YANG Yandong, CHEN Kui, GUO Lu, et al. Analysis of influencing factors of wear of disc cutter of full-face hard rock tunnel boring machine[J]. Tunnel Construction, 2016, 36(11): 1394-1400.
[15] TEALE R. The concept of specific energy in rock drilling[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1965, 2(1): 57-73.
[1] 杨继华, 闫长斌, 齐三红, 郭卫新, 杨风威. 不良地质段双护盾TBM施工综合处理技术[J]. 隧道与地下工程灾害防治, 2023, 5(2): 59-70.
[2] 龚秋明, 谢兴飞, 黄流, 兴海, 吴根生. 引绰济辽工程二标隧洞段TBM滚刀磨损规律[J]. 隧道与地下工程灾害防治, 2022, 4(4): 1-10.
[3] 王明耀, 鲁义强, 贺飞, 李潮. 软岩大变形分类分级方法及TBM适应性[J]. 隧道与地下工程灾害防治, 2022, 4(4): 79-90.
[4] 钟长平, 竺维彬, 王俊彬, 谢文达. 双模盾构机/TBM的原理与应用[J]. 隧道与地下工程灾害防治, 2022, 4(3): 47-66.
[5] 唐旭海, 邵祖亮, 许婧璟, 张怡恒. 高温-液氮循环处理下花岗岩损伤劣化机制[J]. 隧道与地下工程灾害防治, 2022, 4(1): 18-28.
[6] 赵毅. TBM强岩爆掘进段小导洞超前应力释放施工技术[J]. 隧道与地下工程灾害防治, 2022, 4(1): 78-85.
[7] 温森, 吴斐, 李胜, 张洛萌. 不同侧压系数和岩石强度下TBM滚刀破岩效率的数值模拟[J]. 隧道与地下工程灾害防治, 2021, 3(4): 9-19.
[8] 王玉杰,沈强,曹瑞琅,龚秋明,刘立鹏. 大变形围岩TBM施工适应性分类标准研究[J]. 隧道与地下工程灾害防治, 2020, 2(4): 37-43.
[9] 徐琛,刘晓丽,张鲁军,毛宗原,周建军,王思敬. 耦合地质模型的TBM隧道施工过程进度仿真预测[J]. 隧道与地下工程灾害防治, 2020, 2(2): 41-46.
[10] 李树忱,万泽恩,商金华,赵世森,杨晓东,李阳. 盾构/TBM渣土改良与盾尾密封技术研究进展[J]. 隧道与地下工程灾害防治, 2019, 1(4): 33-48.
[11] 梁立唯, 刘春, 秦岩, 朱晨光, 邓尚. 基于MatDEM的盾构滚刀破岩离散元建模与数值模拟[J]. 隧道与地下工程灾害防治, 2019, 1(3): 116-122.
[12] 谭忠盛. 隧道与地下工程建设理念及关键技术——记王梦恕院士的主要学术思想和科研成就[J]. 隧道与地下工程灾害防治, 2019, 1(2): 1-6.
[13] 邓铭江, 刘斌. 超特长隧洞TBM集群施工超前地质预报的挑战、对策与发展方向[J]. 隧道与地下工程灾害防治, 2019, 1(1): 8-19.
[1] QIAN Qihu. Scientific use of the urban underground space to construction the harmonious livable and beautiful city[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 1 -7 .
[2] DENG Mingjiang, LIU Bin. Challenges, countermeasures and development direction of geological forward-prospecting for TBM cluster tunneling in super-long tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 8 -19 .
[3] DING Xiuli, ZHANG Yuting, ZHANG Chuanjian, YAN Tianyou, HUANG Shuling. Review on countermeasures and their adaptability evaluation to tunnels crossing active faults[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 20 -35 .
[4] JIAO Yuyong, ZHANG Weishe, OU Guangzhao, ZOU Junpeng, CHEN Guanghui. Review of the evolution and mitigation of the water-inrush disaster in drilling-and-blasting excavated deep-buried tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 36 -46 .
[5] ZHANG Qingsong, ZHANG Lianzhen, LI Peng, FENG Xiao. New progress in grouting reinforcement theory of water-rich soft stratum in underground engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 47 -57 .
[6] XIA Kaiwen, XU Ying, CHEN Rong. Dynamic tests of rocks subjected to simulated deep underground environments[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 58 -75 .
[7] TAN Zhongsheng. Application experimental study of high-strength lattice girders with heat treatment in tunnel engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 86 -92 .
[8] CHEN Jianxun, LUO Yanbin. The stability of structure and its control technology for lager-span loess tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 93 -101 .
[9] JING Hongwen, YU Liyuan, SU Haijian, GU Jincai, YIN Qian. Development and application of catastrophic experiment system for water inrush in surrounding rock of deep tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 102 -110 .
[10] LI Tianbin, WU Chendi, MENG Lubo, GAO Meiben. Study on dynamic analysis and comprehensive warning method of tunnel collapse[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 111 -118 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn