Please wait a minute...
 
隧道与地下工程灾害防治  2020, Vol. 2 Issue (1): 34-41    
  本期目录 | 过刊浏览 | 高级检索 |
均质地层长隧道纵向地震响应解析解
禹海涛1,2,王祺2,刘涛3
1. 同济大学岩土及地下工程教育部重点实验室, 上海 200092;2. 同济大学地下建筑与工程系, 上海 200092;3. 上海黄浦江越江设施投资建设发展有限公司, 上海 200335
Analytical solution for longitudinal seismic response of long tunnels in homogeneous stratum
YU Haitao1,2, WANG Qi2, LIU Tao3
1. Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University, Shanghai 200092, China;
2. Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China;
3. Shanghai Huangpu River Crossing Facility Investment Construction Development Co., Ltd., Shanghai 200335, China
下载:  PDF (2551KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 以均质地层长隧道结构为对象,将长隧道简化为作用在均匀地层中的弹性地基梁,采用法向和切向地基弹簧模拟地层与结构相互作用,建立相应的微分控制方程,推导出均质地层长隧道纵向地震响应的解析表达式。通过对隧道结构内力响应解析解的分析,提出面向长隧道纵向抗震设计所需最大内力响应解(弯矩、剪力、轴力)的计算方法,可用于快速计算均质地层长隧道纵向最不利地震响应。将解析解与有限元模拟结果进行对比分析,结果表明解析解与数值解基本一致,验证了本研究解析解的正确性。该解析解可以直观地给出各关键参数之间的解析关系,通过参数敏感性分析,得出了地震波不同入射角度、入射波长和地层-结构相对刚度比等关键因素对隧道纵向地震响应的影响规律。分析表明:随着地震波入射波长变长,隧道弯矩响应先增大后减小,而剪力和轴力响应均减小;随着地震波入射角从0°增加到90°,隧道剪力响应变小,弯矩和轴力响应先增大后减小;随着地层-结构相对刚度比变大,隧道内力响应均出现一定程度降低,且弯矩、轴力响应呈现明显降低趋势,但隧道位移响应随相对刚度比变大,隧道沿纵向出现较大的变形,结构设计应该综合考虑内力和变形两方面因素。在此基础上提出了长隧道纵向地震响应解析的合理设计计算方法,可为今后隧道纵向抗震设计提供指导。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
禹海涛
王祺
刘涛
关键词:  地下结构  地震响应  抗震设计  解析解  地层-结构相对刚度比    
Abstract: Long tunnel in homogeneous stratum was studied, which was simplified to a beam on elastic foundation. Soil-structure interaction was simulated by normal and tangential spring. Analytical solution of longitudinal seismic response was derived by solving governing differential equations. Through the analysis of the analytical solution of the internal force response, the calculation method of the maximum internal force response required for the longitudinal seismic design was put forward, which could be used to calculate the most unfavorable longitudinal response of long tunnel. On the basis of numerical calculation, the correctness of the analytical solution was verified. In addition, the analytical solution could intuitively give the correlations among the key parameters. Through parametric analysis, influence laws of incident angle, incident wavelength and relative stiffness ratio on longitudinal seismic response of tunnels were obtained. Analysis showed that as the wavelength of incident wave increased, the bending moment response first increased and then decreased, and the shear force and axial force response decreased. If the incident angle increased from 0° to 90°, the shear response decreased, while the bending moment and axial force first increased and then decreased. As the relative stiffness ratio increased, internal force response was reduced, but the displacement response of the structure and the deformation of tunnel structure would appear larger, which should be considered in the structural design. On this basis, a reasonable design and calculation method of longitudinal seismic response analysis of long tunnels was put forward, which could provide guidance for longitudinal seismic design of long tunnels.
Key words:  underground structure    seismic response    seismic design    analytical solution    soil-structure relative stiffness ratio
发布日期:  2020-07-07     
中图分类号:  TU92  
基金资助: 国家自然科学基金资助项目(41922059&51678438);国家重点研发计划资助项目(2018YFC1504305&2018YFC0809602&2017YFC1500703);中央高校基本科研业务费专项资金资助项目;上海市科委重点课题资助项目(18DZ1205103&17DZ1203804&17DZ1203402)
作者简介:  禹海涛(1983— ),男,河南泌阳人,教授,工学博士,博士后,博士生导师,主要研究方向为地下结构抗震与抗爆动力学. E-mail:yuhaitao@tongji.edu.cn
引用本文:    
禹海涛, 王祺, 刘涛. 均质地层长隧道纵向地震响应解析解[J]. 隧道与地下工程灾害防治, 2020, 2(1): 34-41.
YU Haitao, WANG Qi, LIU Tao. Analytical solution for longitudinal seismic response of long tunnels in homogeneous stratum. Hazard Control in Tunnelling and Underground Engineering, 2020, 2(1): 34-41.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2020/V2/I1/34
[1] HUO H, BOBET A, FERNÁNDEZ G, et al. Load transfer mechanisms between underground structure and surrounding ground: evaluation of the failure of the Daikai station [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(12):1522-1533.
[2] KONTOE S, ZDRAVKOVIC L, POTTS D M, et al. Case study on seismic tunnel response[J]. Canadian Geotechnical Journal, 2008, 45(12):1743-1764.
[3] WANG W L, WANG T T, SU J J, et al Assessment of damage in mountain tunnels due to the Taiwan Chi-Chi Earthquake[J]. Tunnelling and Underground Space Technology, 2001, 16(3):133-150.
[4] YU H T, CHEN J T, BOBET A, et al. Damage observation and assessment of the Longxi Tunnel during the Wenchuan Earthquake[J]. Tunnelling and Underground Space Technology, 2016, 54:102-116.
[5] 林皋.地下结构抗震分析综述:上[J].世界地震工程,1990(2):1-10. LIN Gao. Overview of seismic analysis of underground structures: volume1[J]. World Earthquake Engineering,1990(2):1-10.
[6] PARK D, SAGONG M, KWAK D Y, et al. Simulation of tunnel response under spatially varying ground motion[J]. Soil Dynamics & Earthquake Engineering, 2009, 29(11/12):1417-1424.
[7] YU H T, YUAN Y, BOBET A. Multiscale method for long tunnels subjected to seismic loading[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2013, 37(4):374-398.
[8] 禹海涛,袁勇.长大隧道地震响应分析与试验方法新进展[J].中国公路学报,2018,31(10):19-35. YU Haitao, YUAN Yong. Review on seismic response analysis and test methods for long and large tunnels[J]. China Journal of Highway and Transport, 2018, 31(10):19-35.
[9] YU H T, YUAN Y, QIAO Z, et al. Seismic analysis of a long tunnel based on multi-scale method[J]. Engineering Structures, 2013, 49(2):572-587.
[10] 李鹏. 饱和地基中隧道纵向地震反应的数值分析[D].北京:清华大学, 2013. LI Peng. Numerical analysis for longitudinal seismic response of tunnels in saturated soils[D]. Beijing: Tsinghua University, 2013.
[11] LI P, SONG E X. Three-dimensional numerical analysis for the longitudinal seismic response of tunnels under an asynchronous wave input[J]. Computers and Geotechnics, 2015, 63:229-243.
[12] 孙纬宇,严松宏,汪精河,等.SV波不同角度入射下近接双隧道的地震响应分析[J].东南大学学报(自然科学版), 2019,49(5):956-963. SUN Weiyu, YAN Songhong, WANG Jinghe, et al.Seismic response analysis on adjacent double tunnel at different incident angles of SV waves[J]. Journal of Southeast University(Natural Science Edition), 2019, 49(5):956-963.
[13] 袁勇,包蓁,禹海涛,等.考虑行波效应的盾构隧道多点振动台试验[J].中国公路学报, 2017, 30(8): 174-182. YUAN Yong, BAO Zhen, YU Haitao, et al. Multi-point shaking table test on shield tunnels in consideration of wave-passage effect[J]. China Journal of Highway and Transport, 2017, 30(8): 174-182.
[14] 禹海涛,李翀,袁勇,等. 用于长隧道多点振动台试验的节段式模型箱及其适用性研究[J]. 中国公路学报, 2016, 29(12): 166-174. YU Haitao, LI Chong, YUAN Yong, et al. Research on segmental model container and its validation for multi-point shaking table test of long tunnels[J]. China Journal of Highway and Transport, 2016, 29(12): 166-174.
[15] 袁勇,禹海涛,燕晓,等. 超长沉管隧道多点振动台试验模拟与分析[J]. 中国公路学报, 2016, 29(12): 157-165. YUAN Yong, YU Haitao, YAN Xiao, et al. Multi-point shaking table test simulation and analysis of a super-long immersed tunnel[J]. China Journal of Highway and Transport, 2016, 29(12): 157-165.
[16] 禹海涛,张敬华,袁勇,等.盾构隧道-工作井节点振动台试验设计与分析[J]. 中国公路学报, 2017, 30(8): 183-192. YU Haitao, ZHANG Jinghua, YUAN Yong, et al. Design and analysis of shaking table test on shield tunnel-shaft junction[J]. China Journal of Highway and Transport, 2017, 30(8): 183-192.
[17] HASHASH Y M A, HOOK J J, SCHMIDT B, et al. Seismic design and analysis of underground structures[J]. Tunnelling & Underground Space Technology Incorporating Trenchless Technology Research, 2001, 16(4):247-293.
[18] JOHN C M S, ZAHRAH T F. Aseismic design of underground structures[J]. Tunnelling and Underground Space Technology, 1987, 2(2):165-197.
[19] 禹海涛,张正伟,吴勇信,等.变刚度隧道纵向简化地震响应分析方法[J].地震工程与工程振动,2018,38(4):70-76. YU Haitao, ZHANG Zhengwei, WU Yongxin, et al. Analysis methods for simplified longitudinal seismic response of variable stiffness tunnels[J]. Earthquake Engineering and Engineering Dynamics, 2018, 38(4):70-76.
[20] 小泉淳.盾构隧道的抗震研究及算例[M].北京:中国建筑工业出版社, 2009.
[21] YU H T, CAI C, ZHANG Z W, et al. Analytical solutions for long tunnels under arbitrary dynamic loadings[J]. Journal of Tongji University(Natural Science), 2018.
[22] KWASHIMA K.Seismic design of underground structures[M]. [S.l.] , Japan: Kashima Publishing Company, 1994.
[1] 禹海涛, 朱晨阳. 基于BP神经网络的圆形隧道地震响应预测方法及参数分析[J]. 隧道与地下工程灾害防治, 2023, 5(3): 19-26.
[2] 张卜, 姬若愚, 钟紫蓝, 许成顺, 杜修力. 穿越岩土交界面竖井结构水平地震损伤破坏模式[J]. 隧道与地下工程灾害防治, 2023, 5(3): 27-40.
[3] 加瑞, 杨岗, 郑刚. 盾构隧道施工历史对隧道地震响应的影响[J]. 隧道与地下工程灾害防治, 2023, 5(3): 41-51.
[4] 宗军良, 饶倩, 王祺, 禹海涛. 地面出入式盾构隧道动力响应的数值模拟[J]. 隧道与地下工程灾害防治, 2023, 5(3): 63-70.
[5] 林颖, 王国波, 施龙飞, 王建宁. 近距离空间曲线隧道群地震响应[J]. 隧道与地下工程灾害防治, 2023, 5(3): 86-92.
[6] 张中杰, 李心熙, 吴航, 陈加核, 禹海涛. 季节性冻土环境下有轨电车运营期轨道动力响应[J]. 隧道与地下工程灾害防治, 2022, 4(1): 48-54.
[7] 耿萍,何川,张景,何悦,郭翔宇,陈枰良,王琦,杨琪,陈昌健. 盾构隧道地震响应试验研究[J]. 隧道与地下工程灾害防治, 2020, 2(2): 47-57.
[1] QIAN Qihu. Scientific use of the urban underground space to construction the harmonious livable and beautiful city[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 1 -7 .
[2] DENG Mingjiang, LIU Bin. Challenges, countermeasures and development direction of geological forward-prospecting for TBM cluster tunneling in super-long tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 8 -19 .
[3] DING Xiuli, ZHANG Yuting, ZHANG Chuanjian, YAN Tianyou, HUANG Shuling. Review on countermeasures and their adaptability evaluation to tunnels crossing active faults[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 20 -35 .
[4] JIAO Yuyong, ZHANG Weishe, OU Guangzhao, ZOU Junpeng, CHEN Guanghui. Review of the evolution and mitigation of the water-inrush disaster in drilling-and-blasting excavated deep-buried tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 36 -46 .
[5] ZHANG Qingsong, ZHANG Lianzhen, LI Peng, FENG Xiao. New progress in grouting reinforcement theory of water-rich soft stratum in underground engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 47 -57 .
[6] XIA Kaiwen, XU Ying, CHEN Rong. Dynamic tests of rocks subjected to simulated deep underground environments[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 58 -75 .
[7] HONG Kairong. Study on rock breaking and wear of TBM hob in high-strength high-abrasion stratum[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 76 -85 .
[8] TAN Zhongsheng. Application experimental study of high-strength lattice girders with heat treatment in tunnel engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 86 -92 .
[9] CHEN Jianxun, LUO Yanbin. The stability of structure and its control technology for lager-span loess tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 93 -101 .
[10] JING Hongwen, YU Liyuan, SU Haijian, GU Jincai, YIN Qian. Development and application of catastrophic experiment system for water inrush in surrounding rock of deep tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 102 -110 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn