Please wait a minute...
 
隧道与地下工程灾害防治  2020, Vol. 2 Issue (3): 1-12    
  高端论坛 本期目录 | 过刊浏览 | 高级检索 |
隧道病害监测检测技术研究现状概述
陈湘生,徐志豪,包小华,崔宏志
深圳大学土木与交通工程学院未来地下城市研究院, 广东 深圳 518060
Overview of research on tunnel defects monitoring and detection technology
CHEN Xiangsheng, XU Zhihao, BAO Xiaohua, CUI Hongzhi
Underground Polis Academy, Department of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China
下载:  PDF (10858KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 由于隧道沿线众长,人工检测效率低下且主观性强,需要自动化、信息化的监测检测方式来进行日常的运营维护管理,及时进行病害诊断和防治。介绍隧道中常见的几种病害和目前国内外常用的几种监测检测技术,分析各自的特点和检测能力。简述无人机、巡检车、巡检机器人3种常见巡检系统装备,对其使用条件和环境进行了分析。对隧道智能监测检测未来的发展趋势进行展望,提出运用多种综合测检测技术,结合人工智能和大数据分析是未来隧道监测检测智能化发展的趋向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈湘生
徐志豪
包小华
崔宏志
关键词:  隧道  监测  检测  病害  技术装备    
Abstract: Due to the long length of the tunnel, the low efficiency of manual detection and the strong subjectivity, automated and information-based monitoring and detection methods were required for daily operation and management maintenance, and timely diagnosis and prevention. This study introduced several common defects in tunnels and several commonly used monitoring and detection technologies at home and abroad, and analyzed their respective characteristics and detection capabilities. Three common inspection system equipments- UAV, inspection vehicle, and inspection robot were presented, and the applicable conditions and environment were analyzed. The future development trend of tunnel intelligent monitoring and detection was prospected. It was proposed that the development of a variety of comprehensive detection technologies, combined with artificial intelligence and big data analysis is the future trend of intelligent development of tunnel monitoring and detection.
Key words:  tunnel    monitoring    detection    defect    technology
收稿日期:  2020-07-19      发布日期:  2020-09-20     
中图分类号:  U45  
基金资助: 

国家重点研发计划资助项目(2018YFB2101000 2019YFC1511104)

作者简介:  陈湘生(1956— ),男,湖南湘潭人,中国工程院院士,教授,博士生导师,主要研究方向为地下工程控制地层变形技术. E-mail: xschen@szu.edu.cn
引用本文:    
陈湘生, 徐志豪, 包小华, 崔宏志. 隧道病害监测检测技术研究现状概述[J]. 隧道与地下工程灾害防治, 2020, 2(3): 1-12.
CHEN Xiangsheng, XU Zhihao, BAO Xiaohua, CUI Hongzhi. Overview of research on tunnel defects monitoring and detection technology. Hazard Control in Tunnelling and Underground Engineering, 2020, 2(3): 1-12.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2020/V2/I3/1
[1] 乔书光.地铁工程结构病害研究[J].湖北广播电视大学学报,2009,29(7):160. QIAO Shuguang. Research on structural diseases of subway engineering[J]. Journal of Hubei Radio and Television University, 2009,29(7): 160.
[2] 胥犇,王华牢,夏才初.盾构隧道结构病害状态综合评价方法研究[J].地下空间与工程学报,2010,6(1):201-207. XU Ben, WANG Hualao, XIA Caichu. Study on comprehensive evaluation of shield tunnel structural defections[J]. Chinese Journal of Underground Space and Engineering, 2010, 6(1): 201-207.
[3] 陈菁菁.城市轨道交通重大运营事故和灾害分析[J].城市轨道交通研究,2010,13(5):41-45. CHEN Jingjing. Analysis on grave accidents and disasters in urban rail transit operation[J]. Urban Mass Transit, 2010, 13(5): 41-45.
[4] 刘杰. 铁路路基含水状态的探地雷达检测方法研究[D].北京:中国矿业大学(北京),2015. LIU Jie. Methods of detection on moisture of railway subgrave by using the ground penetrating radar[D].Beijing: China University of Mining & Technology(Beijing), 2015.
[5] 于广婷,李秋扬,卢晓龙,等.地下探测技术在潍坊地下输油管道中的应用[J].山东国土资源,2012,(11):47-50. YU Guangting, LI Qiuyang, LU Xiaolong, et al. Application of underground detection technology in Weifang underground oil pipeline[J]. Shandong Land and Resources, 2012(11): 47-50.
[6] 周黎明,王法刚.地质雷达法检测隧道衬砌混凝土质量[J].岩土工程界,2003,6(3):74-76.
[7] 刘敦文,黄仁东,徐国元,等.应用探地雷达技术检测隧道衬砌质量[J].物探与化探,2001,25(6):469-473. LIU Dunwen, HUANG Rendong, XU Guoyuan, et al. The application of ground-penetrating radar to the inspection of tunnel lining quality[J]. Geophysical and Geochemical Exploration, 2001, 25(6): 469-473.
[8] ZHANG F S, XIE X Y, HUANG H W. Application of ground penetrating radar in grouting evaluation for shield tunnel construction[J]. Tunnelling and Underground Space Technology, 2010, 25(2):99-107.
[9] 刘新荣,刘保县,王道良,等.隧道衬砌病害探地雷达三维正演模拟及工程验证[J].中国铁道科学,2013,34(4):46-53. LIU Xinrong, LIU Baoxian, WANG Daoliang,et al. GPR three-dimensional forward modeling of defects in tunnel lining and engineering verification[J]. China Railway Science, 2013, 34(4): 46-53.
[10] 李术才,薛翊国,张庆松,等.高风险岩溶地区隧道施工地质灾害综合预报预警关键技术研究[J].岩石力学与工程学报,2008,27(7):1297-1307. LI Shucai, XUE Yiguo, ZHANG Qingsong, et al. Key technology study on comprehensive prediction and early-warning of geological hazards during tunnel construction in high-risk Karst areas[J]. Journal of Rock Mechanics and Engineering, 2008, 27(7): 1297-1307.
[11] 娄健.GPR逆时偏移在隧道衬砌检测中的应用[J].中国公路,2019(16):112-113.
[12] KRAVITZ B, MOONEY M, KARLOVSEK J, et al. Void detection in two-component annulus grout behind a pre-cast segmental tunnel liner using ground penetrating radar[J]. Tunnelling and Underground Space Technology, 2019, 83:381-392.
[13] KILIC G, EREN L. Neural network based inspection of voids and Karst conduits in hydro-electric power station tunnels using GPR[J]. Journal of Applied Geophysics, 2018, 151:194-204.
[14] 毛方儒,王磊.三维激光扫描测量技术[J].宇航计测技术,2005,25(2):1-6. MAO Fangru, WANG Lei. Measurement technology of 3D laser scanning[J]. Journal of Astronautic Metrology and Measurement, 2005, 25(2): 1-6.
[15] 陈欣,江瑞龄.三维激光扫描技术在高速公路现役隧道变形监测上的应用[J].科技创新导报,2013(35):113-114.
[16] 王令文,程效军,万程辉.基于三维激光扫描技术的隧道检测技术研究[J].工程勘察,2013,41(7):53-57. WANG Lingwen, CHENG Xiaojun, WAN Chenghui. Study on the 3D laser scanning technology for tunnel inspection[J]. Geotechnical Investigation & Surveying, 2013, 41(7): 53-57.
[17] 谢雄耀,卢晓智,田海洋,等.基于地面三维激光扫描技术的隧道全断面变形测量方法[J].岩石力学与工程学报,2013,32(11):2214-2224. XIE Xiongyao, LU Xiaozhi, TIAN Haiyang, et al. Development of a modeling method for monitoring tunnel deformation based on terrestrial 3D laser scanning[J].Chinese Journal of Rock Mechanics and Engineering, 2013, 32(11): 2214-2224.
[18] 李宗平,张永涛,杨钊,等.三维激光扫描技术在隧道变形与断面检测中的应用研究[J].隧道建设,2017,37(3):336-341. LI Zongping, ZHANG Yongtao, YANG Zhao, et al. Application of 3D laser scanning technology to tunnel deformation monitoring and cross-section detection[J].Tunnel Construction, 2017, 37(3): 336-341.
[19] FARAHANI B V, BARROS F, SOUSA P J, et al. A coupled 3D laser scanning and digital image correlation system for geometry acquisition and deformation monitoring of a railway tunnel[J]. Tunnelling and Underground Space Technology, 2019, 91:102995.
[20] 黄建新. 冲击回波法在混凝土结构无损检测中的应用[D].南京:河海大学,2006. HUANG Jianxin. The application of impact-echo method on nondestructive testing for concrete structures[D].Nanjing: Hohai University, 2006.
[21] 王广伟,王素芳. 冲击回波法在隧道衬砌厚度检测中的应用[C] //河南省建筑业行业优秀论文集(2010),郑州:河南省建筑业协会,2010:305-308.
[22] 赵仲杰,潘永东,王治华.冲击回波法对隧道衬砌结构的数值模拟与应用[J].工程地球物理学报,2018,15(5):660-666. ZHAO Zhongjie, PAN Yongdong, WANG Zhihua. Study of impact-echo method detection in numerical simulation of tunnel lining structure and application[J].Chinese Journal of Engineering Geophysics, 2018, 15(5): 660-666.
[23] 姜勇,吴佳晔,冯源.铁路隧道衬砌缺陷检测中地质雷达法和冲击回波法的联合应用研究[J].铁道建筑,2018,58(12):6-11. JIANG Yong, WU Jiaye, FENG Yuan. Study on combined application of geological radar method and shock echo method in defect inspection of railway tunnel lining[J]. Railway Engineering, 2018, 58(12): 6-11.
[24] 刘可,姚菲.冲击回波法识别地铁盾构隧道注浆缺陷的有限元模拟研究[J].江苏建筑,2013(6):32-35. LIU Ke, YAO Fei. Research on identifying defects in metro shield tunnel grouting by impact echo method[J]. Jiangsu Construction, 2013(6): 32-35.
[25] SONG K I, CHO G C. Bonding state evaluation of tunnel shotcrete applied onto hard rocks using the impact-echo method[J]. NDT & E International, 2009, 42(6): 487-500.
[26] SUDA T, TABATA A, KAWAKAMI J, et al. Development of an impact sound diagnosis system for tunnel concrete lining[J]. Tunnelling and Underground Space Technology, 2004, 19(4/5):328-329.
[27] VOZNESENSKII A S, NABATOV V V. Identification of filler type in cavities behind tunnel linings during a subway tunnel surveys using the impulse-response method[J]. Tunnelling and Underground Space Technology, 2017, 70:254-261.
[28] 李意,雷志勇,李青松.红外探测技术的应用与发展[J].国外电子测量技术,2018,37(2):80-83. LI Yi, LEI Zhiyong, LI Qingsong. Application and development of the infrared detection technology[J]. Foreign Electronic Measurement Technology, 2018, 37(2): 80-83.
[29] 田荣,吴应明.红外探测技术在隧道超前探水中的应用研究[J].铁道标准设计,2007(增刊2):107-110.
[30] 吕乔森,陈建平.红外探水技术在岩溶隧道施工中的应用[J].现代隧道技术,2010,47(4):45-49. LÜ Qiaosen, CHEN Jianping. Infrared acquisition technology applied to Karst tunnels[J]. Modern Tunnelling Technology, 2010, 47(4): 45-49.
[31] 豆海涛,黄宏伟,薛亚东.隧道衬砌渗漏水红外辐射特征影响因素试验研究[J].岩石力学与工程学报,2011,30(12):2426-2434. DOU Haitao, HUANG Hongwei, XUE Yadong. Experimental study of factors affecting thermal infrared radiation characteristics of tunnel lining water leakage[J].Chinese Journal of Rock Mechanics and Engineering, 2011, 30(12): 2426-2434.
[32] 王少飞,刘桂强,卢辉.三波长红外火焰探测器在公路隧道中的应用[J].公路,2013(3):224-228. WANG Shaofei, LIU Guiqiang, LU Hui. Application of three wavelength infrared flame detector in highway tunnel[J]. Highway, 2013(3): 224-228.
[33] 许宏科,房建武,杨伟松,等.高速公路隧道火焰检测技术研究[J].公路交通技术,2011, 27(3):119-124. XU Hongke, FANG Jianwu, YANG Weisong, et al. Research on flame detection techniques in expressway tunnels[J]. Technology of Highway and Transport, 2011, 27(3): 119-124.
[34] 张君善.感应光纤传感器原理与应用及发展[J].科技与企业,2013(3):278.
[35] 付华,谢森,徐耀松,等.光纤布拉格光栅传感技术在隧道火灾监测中的应用研究[J].传感技术学报,2013,26(1):133-137. FU Hua, XIE Sen, XU Yaosong, et al. Application research of optical fiber Bragg grating sensing technology in the tunnel fire monitoring[J]. Journal of Transduction Technology, 2013, 26(1): 133-137.
[36] 施斌,徐学军,王镝,等.隧道健康诊断BOTDR分布式光纤应变监测技术研究[J].岩石力学与工程学报,2005, 24(15):2622-2628. SHI Bin, XU Xuejun, WANG Di, et al. Study on BOTDR-based distributed optical fiber strain measurement for tunnel health diagnosis[J].Chinese Journal of Rock Mechanics and Engineering, 2005, 24(15): 2622-2628.
[37] WU C F, SUN K K, XU Y M, et al. Concrete crack detection method based on optical fiber sensing network and microbending principle[J].Safety Science,2019,117:299-304.
[38] BREMER K, MEINHARDT-WOLLWEBER M, THIEL T, et al. Sewerage tunnel leakage detection using a fibre optic moisture-detecting sensor system[J]. Sensors and Actuators A: Physical, 2014, 220:62-68.
[39] CHENG W C, NI J C. Feasibility study of applying SOFO optical fiber sensor to segment of shield tunnel[J]. Tunnelling and Underground Space Technology, 2009, 24(3):331-349.
[40] 刘学增,叶康.隧道衬砌裂缝的远距离图像测量技术[J].同济大学学报(自然科学版),2012,40(6):829-836. LIU Xuezeng, YE Kang. A long-distance image measuring technique for crack on tunnel lining[J].Journal of Tongji University(Natural Science), 2012, 40(6): 829-836.
[41] 黄宏伟,李庆桐.基于深度学习的盾构隧道渗漏水病害图像识别[J].岩石力学与工程学报,2017,36(12):2861-2871. HUANG Hongwei, LI Qingtong. Image recognition for water leakage in shield tunnel based on deep learning[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(12): 2861-2871.
[42] 周奇才,孙月腾,陈海燕,等.地铁隧道变形监测的数字图像处理技术研究[J].中国工程机械学报,2009,7(4):463-468. ZHOU Qicai, SUN Yueteng, CHEN Haiyan, et al. Digital image processing technologies for deformation monitoring on subway tunnels[J].Chinese Journal of Construction Machinery, 2009, 7(4): 463-468.
[43] ATTARD L, DEBONO C J, VALENTINO G, et al. Tunnel inspection using photogrammetric techniques and image processing: a review[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 144:180-188.
[44] 郑子杰.微型全保护无人机电缆隧道巡检应用系统[J].数字通信世界,2018(12):283,151.
[45] ZAN Y W, LI Z L, SU G F, et al. An innovative vehicle-mounted GPR technique for fast and efficient monitoring of tunnel lining structural conditions[J]. Case Studies in Nondestructive Testing and Evaluation, 2016, 6:63-69.
[46] GAVILÁN M, SÁNCHEZ F, RAMOS J A, et al. Mobile inspection system for high-resolution assessment of tunnels[R]. Hong Kong: The Hong Kong Polytechnic University, 2013.
[47] HUANG Z, FU H L, CHEN W, et al. Damage detection and quantitative analysis of shield tunnel structure[J]. Automation in Construction, 2018, 94: 303-316.
[48] 周应新,黄宏伟,孙乔宝,等.一种公路隧道病害集成检测车: 中国,104527495A[P]. 2015-04-22.
[49] 刘学增,朱爱玺,朱合华.一种公路隧道表观病害采集车: 中国,106627317A[P]. 2017-05-10.
[50] FUJITA M, KOTYAEV O, SHIMADA Y. Non-destructive remote inspection for heavy constructions[C] //Conference on Lasers and Electro-Optics. San Jose, USA: OSA Publishing, 2012.
[51] YU S N, JANG J H, HAN C S. Auto inspection system using a mobile robot for detecting concrete cracks in a tunnel[J]. Automation in Construction, 2007, 16(3): 255-261.
[52] VICTORES J G, MARTíNEZ S, JARDóN A, et al. Robot-aided tunnel inspection and maintenance system by vision and proximity sensor integration[J]. Automation in Construction, 2011, 20(5): 629-636.
[53] PROTOPAPADAKIS E, VOULODIMOS A, DOULAMIS A, et al. Automatic crack detection for tunnel inspection using deep learning and heuristic image post-processing[J].Applied Intelligence, 2019, 49(7):2793-2806.
[54] 陈东生.一种基于爬壁机器人装置的隧道检测方法[J].铁道建筑,2017(5):79-82. CHEN Dongsheng. A tunnel detection method based on wall climbing robot device[J]. Railway Engineering, 2017(5): 79-82.
[55] 李吉雄,李关寿,张立强,等.面向物联网和3DGIS的公路隧道智能检修机器人[Z].重庆市鹏创道路材料有限公司, 交通部重庆公路科学研究所, 2015.
[56] MENENDEZ E, VICTORES J G, MONTERO R, et al. Tunnel structural inspection and assessment using an autonomous robotic system[J]. Automation in Construction, 2018, 87:117-126.
[57] WHITE J B, WIEGHAUS K T, KARTHIK M M, et al. Nondestructive testing methods for underwater tunnel linings: practical application at Chesapeake Channel Tunnel[J]. Journal of Infrastructure Systems, 2017, 23:11.
[1] 加瑞, 杨岗, 郑刚. 盾构隧道施工历史对隧道地震响应的影响[J]. 隧道与地下工程灾害防治, 2023, 5(3): 41-51.
[2] 王秋哲, 韩瑞, 白笑笑, 赵凯. 锁定回填下沉管隧道地震稳定性[J]. 隧道与地下工程灾害防治, 2023, 5(3): 71-77.
[3] 蒋宇静, 王兴达, 张学朋. 远场地震作用下跨断层深埋隧道结构的动力变形破坏特征[J]. 隧道与地下工程灾害防治, 2023, 5(3): 1-11.
[4] 王伟, 刘英, 庄海洋, 赵凯, 陈国兴. 考虑内部结构的大直径盾构隧道抗震性能[J]. 隧道与地下工程灾害防治, 2023, 5(3): 78-85.
[5] 林颖, 王国波, 施龙飞, 王建宁. 近距离空间曲线隧道群地震响应[J]. 隧道与地下工程灾害防治, 2023, 5(3): 86-92.
[6] 袁勇, 王祺. 道路隧道对软土场地的地震动影响[J]. 隧道与地下工程灾害防治, 2023, 5(3): 12-18.
[7] 禹海涛, 朱晨阳. 基于BP神经网络的圆形隧道地震响应预测方法及参数分析[J]. 隧道与地下工程灾害防治, 2023, 5(3): 19-26.
[8] 宗军良, 饶倩, 王祺, 禹海涛. 地面出入式盾构隧道动力响应的数值模拟[J]. 隧道与地下工程灾害防治, 2023, 5(3): 63-70.
[9] 张亮亮. 纵向排烟V形坡隧道火灾烟流特性现场火灾试验研究[J]. 隧道与地下工程灾害防治, 2023, 5(2): 71-79.
[10] 王建圣, 蒋志斌, 李丽超. 隧道岩体贯通节理面注浆加固力学响应特征[J]. 隧道与地下工程灾害防治, 2023, 5(2): 80-88.
[11] 魏纲, 徐天宝, 张治国. 复杂应力路径下波纹钢加固盾构隧道数值分析[J]. 隧道与地下工程灾害防治, 2023, 5(2): 24-32.
[12] 马安震, 谭海星, 刘洋, 关少钰. 复杂环境下大断面矩形顶管隧道管节设计[J]. 隧道与地下工程灾害防治, 2023, 5(1): 81-89.
[13] 王智, 刘祥勇, 朱先发, 洪小星, 沈一鸣, 张冰利. 小曲率半径隧道施工对盾构管片结构影响[J]. 隧道与地下工程灾害防治, 2023, 5(1): 45-54.
[14] 黄兴, 张炜, 殷建钢, 施皓, 张晓磊. 填埋场扩建后下穿隧道结构的安全性[J]. 隧道与地下工程灾害防治, 2023, 5(1): 55-63.
[15] 周旭明, 石钰锋, 张利敏, 张慧鹏, 曹成威, 陈昭阳. 边墙与仰拱连接处缺陷对隧道结构影响试验[J]. 隧道与地下工程灾害防治, 2023, 5(1): 74-80.
[1] QIAN Qihu. Scientific use of the urban underground space to construction the harmonious livable and beautiful city[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 1 -7 .
[2] DENG Mingjiang, LIU Bin. Challenges, countermeasures and development direction of geological forward-prospecting for TBM cluster tunneling in super-long tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 8 -19 .
[3] DING Xiuli, ZHANG Yuting, ZHANG Chuanjian, YAN Tianyou, HUANG Shuling. Review on countermeasures and their adaptability evaluation to tunnels crossing active faults[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 20 -35 .
[4] JIAO Yuyong, ZHANG Weishe, OU Guangzhao, ZOU Junpeng, CHEN Guanghui. Review of the evolution and mitigation of the water-inrush disaster in drilling-and-blasting excavated deep-buried tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 36 -46 .
[5] ZHANG Qingsong, ZHANG Lianzhen, LI Peng, FENG Xiao. New progress in grouting reinforcement theory of water-rich soft stratum in underground engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 47 -57 .
[6] XIA Kaiwen, XU Ying, CHEN Rong. Dynamic tests of rocks subjected to simulated deep underground environments[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 58 -75 .
[7] HONG Kairong. Study on rock breaking and wear of TBM hob in high-strength high-abrasion stratum[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 76 -85 .
[8] TAN Zhongsheng. Application experimental study of high-strength lattice girders with heat treatment in tunnel engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 86 -92 .
[9] CHEN Jianxun, LUO Yanbin. The stability of structure and its control technology for lager-span loess tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 93 -101 .
[10] JING Hongwen, YU Liyuan, SU Haijian, GU Jincai, YIN Qian. Development and application of catastrophic experiment system for water inrush in surrounding rock of deep tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 102 -110 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn