Please wait a minute...
 
隧道与地下工程灾害防治  2023, Vol. 5 Issue (3): 78-85    DOI: 10.19952/j.cnki.2096-5052.2023.03.09
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
考虑内部结构的大直径盾构隧道抗震性能
王伟1,刘英1,庄海洋1, 2*,赵凯1,陈国兴1
1. 南京工业大学岩土工程研究所, 江苏 南京 211816;2. 华东交通大学土木建筑学院, 江西 南昌 330013
Seismic performance of large shield tunnel considering internal structure
WANG Wei1, LIU Ying1, ZHUANG Haiyang1,2*, ZHAO Kai1, CHEN Guoxing1
1. Institute of Geotechnical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China;
2. School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang 330013, Jiangxi, China
下载:  PDF (15928KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 以GIL过江盾构隧道综合管廊为例,通过建立有、无π形支架结构的非线性土-隧道结构静、动力耦合三维有限元分析模型,研究π形支架结构对考虑错缝拼装的盾构隧道整体抗震性能的影响。结果表明:放入π形支架结构后,隧道底部的管片张开量减小显著,减小量达60%;大震下封顶块附近的管片张开量有增大趋势。输入地震动峰值较小时,隧道顶底及π形支架结构-隧道连接处的加速度反应谱变化不大;随着输入地震动峰值的增大,反应谱短周期内波动变大,反应谱值整体下降。整体来看,隧道结构顶部管片混凝土受拉损伤加重,底部受拉损伤相对较轻,受拉损伤主要分布在管片接缝处及其附近区域,在大直径盾构隧道抗震设计时有必要考虑隧道-π形支架结构动力相互作用的影响。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王伟
刘英
庄海洋
赵凯
陈国兴
关键词:  盾构隧道  π形支架结构  抗震性能  数值模拟  地震破坏    
Abstract: Taking the GIL shield tunnel integrated corridor as an example, the non-linear soil-tunnel structure with and without the π-shaped bracket structure was established as a three-dimensional finite element analysis model for static and dynamic coupling, and the effect of the π-shaped bracket structure on the overall seismic performance of the shield tunnel considering staggered assembly was investigated. The results showed that the tube sheet tension at the bottom of the tunnel was significantly reduced by up to 60% after the π-shaped bracket structure was placed, and the tube sheet tension near the capping block tended to increase under large earthquakes. The acceleration response spectra at the top and bottom of the tunnel and at the π-frame structure-tunnel connection did not change significantly when the input ground shaking peak was small; as the input ground shaking peak increases, the response spectra fluctuate significantly within short periods and the overall response spectra values decreased. On the whole, the tensile damage to the concrete at the top of the tunnel structure was aggravated, while the tensile damage at the bottom was relatively light, and the tensile damage was mainly distributed at and around the tube joints. It was necessary to consider the effect of the tunnel-π-shaped support structure dynamic interaction in the seismic design of large diameter shield tunnels.
Key words:  shield tunnel    π-shaped support structure    seismic performance    numerical analysis    earthquake damageReceived:2023-07-05    Revised:2023-08-25    Accepted:2023-08-30    Published:2023-09-20
收稿日期:  2023-07-05      发布日期:  2023-09-20     
中图分类号:  TU4  
基金资助: 国家自然科学基金面上资助项目(51978333)
通讯作者:  庄海洋(1978— ),男,江苏宿迁人,博士,教授,博士生导师,主要研究方向为岩土地震工程与地下结构防震减灾.    E-mail:  zhuang7802@163.com
作者简介:  王伟(1997— ),男,江苏泰州人,硕士研究生,主要研究方向为岩土工程地震. E-mail:1320986488@qq.com.
引用本文:    
王伟, 刘英, 庄海洋, 赵凯, 陈国兴. 考虑内部结构的大直径盾构隧道抗震性能[J]. 隧道与地下工程灾害防治, 2023, 5(3): 78-85.
WANG Wei, LIU Ying, ZHUANG Haiyang, ZHAO Kai, CHEN Guoxing. Seismic performance of large shield tunnel considering internal structure. Hazard Control in Tunnelling and Underground Engineering, 2023, 5(3): 78-85.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2023/V5/I3/78
[1] 禹海涛, 吴胤翔, 涂新斌, 等. 盾构隧道纵向地震响应的多尺度分析方法[J]. 中国公路学报, 2020, 33(1):138-144. YU Haitao, WU Yinxiang, TU Xinbin, et al. Multi-scale method for longitudinal seismic response analysis of shield tunnels[J]. China Journal of Highway and Transport, 2020, 33(1):138-144.
[2] 孙文昊, 封坤, 肖明清, 等. 双层隧道内部结构对隧道纵向力学性能的影响[J]. 铁道建筑, 2021, 61(5):43-48. SUN Wenhao, FENG Kun, XIAO Mingqing, et al. Influence of internal structure of double deck tunnel on longitudinal mechanical properties of tunnel[J]. Railway Engineering, 2021, 61(5):43-48.
[3] 崔佳, 张力, 郭文琦. 盾构隧道装配式内部结构形式及其对管片受力的影响[J]. 建筑技术开发, 2021, 48(15):96-98. CUI Jia, ZHANG Li, GUO Wenqi. Assembled internal structure of shield tunnel and its influence on force of segment[J]. Building Technology Development, 2021, 48(15):96-98.
[4] 王程, 汤鹏, 庄海洋, 等. 考虑错缝拼装的过江大直径管廊盾构隧道抗震性能研究[J]. 自然灾害学报, 2021, 30(1):116-123. WANG Cheng, TANG Peng, ZHUANG Haiyang, et al. Seismic performance of large shield tunnel under the Yangzi River with considering the staggered joints[J]. Journal of Natural Disasters, 2021, 30(1):116-123.
[5] 刘学增, 赖浩然, 桑运龙, 等. 双侧卸载工况下盾构隧道错缝拼装结构变形特征[J]. 同济大学学报(自然科学版), 2019, 47(10):1398-1405. LIU Xuezeng, LAI Haoran, SANG Yunlong, et al. Deformation characteristics of shield tunnel with staggered joints under bilateral unloading condition[J]. Journal of Tongji University(Natural Science), 2019, 47(10):1398-1405.
[6] 庄海洋, 任佳伟, 王瑞, 等. 两层三跨框架式地铁地下车站结构弹塑性工作状态与抗震性能水平研究[J]. 岩土工程学报, 2019, 41(1):131-138. ZHUANG Haiyang, REN Jiawei, WANG Rui, et al. Elasto-plastic working states and seismic performance levels of frame-type subway underground station with two layers and three spans[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(1):131-138.
[7] 付继赛, 庄海洋, 王旭, 等. 地下连续墙连接方式对地铁车站结构地震反应的影响研究[J]. 自然灾害学报, 2018, 27(6):42-50. FU Jisai, ZHUANG Haiyang, WANG Xu, et al. Influence of diaphragm wall connection mode on earthquake response of subway station structure[J]. Journal of Natural Disasters, 2018, 27(6):42-50.
[8] INSTITUTION B S. Codeof practice for temporary works procedures and the permissible stress design of falsework: BS 5975-2008+A1-2011[S]. [S.l.] : British Standards Institution, 2011.
[9] 庄海洋, 陈国兴, 朱定华. 土体动力粘塑性记忆型嵌套面本构模型及其验证[J]. 岩土工程学报, 2006, 28(10):1267-1272. ZHUANG Haiyang, CHEN Guoxing, ZHU Dinghua. Dynamic visco-plastic memorial nested yield surface model of soil and its verification[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(10):1267-1272.
[10] LEE J H, FENVES G L. Plastic-damage model for cyclic loading of concrete structures[J]. Journal of Engineering Mechanics, 1998, 124(8):892-900.
[11] MALVAR L J, CRAWFORD J E, WESEVICH J W, et al. A plasticity concrete material model for DYNA3D[J]. International Journal of Impact Engineering, 1997, 19(9/10):847-873.
[12] ZHUANG H Y, HU Z H, WANG X J, et al. Seismic responses of a large underground structure in liquefied soils by FEM numerical modelling[J]. Bulletin of Earthquake Engineering, 2015, 13(12):3645-3668.
[13] 楼梦麟, 王文剑, 朱彤, 等. 土-结构体系振动台模型试验中土层边界影响问题[J]. 地震工程与工程振动, 2000, 20(4):30-36. LOU Menglin, WANG Wenjian, ZHU Tong, et al. Soil lateral boundary effect in shaking fable model test of soil-structure system[J]. Earthquake Engineering and Engineering Vibration, 2000, 20(4):30-36.
[14] ZHUANG H Y, REN J W, MIAO Y, et al. Seismic performance levels of a large underground subway station in different soil foundations[J]. Journal of Earthquake Engineering, 2021, 25(12/14):2808-2833.
[1] 加瑞, 杨岗, 郑刚. 盾构隧道施工历史对隧道地震响应的影响[J]. 隧道与地下工程灾害防治, 2023, 5(3): 41-51.
[2] 宗军良, 饶倩, 王祺, 禹海涛. 地面出入式盾构隧道动力响应的数值模拟[J]. 隧道与地下工程灾害防治, 2023, 5(3): 63-70.
[3] 孙港, 王军祥, 孟祥竹, 郭连军, 孙杰. 基于近场动力学理论的岩石双孔爆破动态断裂行为数值模拟[J]. 隧道与地下工程灾害防治, 2023, 5(2): 42-58.
[4] 魏纲, 徐天宝, 张治国. 复杂应力路径下波纹钢加固盾构隧道数值分析[J]. 隧道与地下工程灾害防治, 2023, 5(2): 24-32.
[5] 赵兴东, 窦翔, 李勇, 王立君. 基于Ventsim的地下水封洞库建造期通风方式优选[J]. 隧道与地下工程灾害防治, 2023, 5(1): 8-17.
[6] 党晓宇, 马劲松. 基于桩板组合结构等代仰拱的公路隧道加固方案[J]. 隧道与地下工程灾害防治, 2023, 5(1): 90-96.
[7] 王智, 刘祥勇, 朱先发, 洪小星, 沈一鸣, 张冰利. 小曲率半径隧道施工对盾构管片结构影响[J]. 隧道与地下工程灾害防治, 2023, 5(1): 45-54.
[8] 黄兴, 张炜, 殷建钢, 施皓, 张晓磊. 填埋场扩建后下穿隧道结构的安全性[J]. 隧道与地下工程灾害防治, 2023, 5(1): 55-63.
[9] 关振长, 周宇轩, 吕春波, 吕荔炫. 空气间隔装药周边眼爆破精细化数值模拟[J]. 隧道与地下工程灾害防治, 2022, 4(4): 11-19.
[10] 韩兴博, 陈子明, 苏恩杰, 梁晓明, 宋桂峰, 叶飞. 盾构隧道围岩压力分布规律及作用模式[J]. 隧道与地下工程灾害防治, 2022, 4(4): 34-43.
[11] 喻伟, 林赞权, 朱彬彬, 汪元冶, 丁文其, 乔亚飞, 张晓东, 龚琛杰. 盾构隧道防水密封垫材料的高温老化后性能[J]. 隧道与地下工程灾害防治, 2022, 4(4): 52-58.
[12] 赵辰洋, 罗毛毛, 邱静怡, 倪芃芃, 赵锋烽. 盾构隧道施工引起地层变形预测方法综述[J]. 隧道与地下工程灾害防治, 2022, 4(3): 31-46.
[13] 丁智, 李鑫家, 张霄. 基于机器学习的盾构掘进地表变形预测研究与展望[J]. 隧道与地下工程灾害防治, 2022, 4(3): 1-9.
[14] 吕玺琳, 赵庾成, 曾盛. 砂层中盾构隧道开挖面稳定性物理模型试验[J]. 隧道与地下工程灾害防治, 2022, 4(3): 67-76.
[15] 潘秋景, 李晓宙, 黄杉, 汪来, 王树英, 方国光. 机器学习在盾构隧道智能施工中的应用——综述与展望[J]. 隧道与地下工程灾害防治, 2022, 4(3): 10-30.
[1] DENG Mingjiang, LIU Bin. Challenges, countermeasures and development direction of geological forward-prospecting for TBM cluster tunneling in super-long tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 8 -19 .
[2] DING Xiuli, ZHANG Yuting, ZHANG Chuanjian, YAN Tianyou, HUANG Shuling. Review on countermeasures and their adaptability evaluation to tunnels crossing active faults[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 20 -35 .
[3] JIAO Yuyong, ZHANG Weishe, OU Guangzhao, ZOU Junpeng, CHEN Guanghui. Review of the evolution and mitigation of the water-inrush disaster in drilling-and-blasting excavated deep-buried tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 36 -46 .
[4] ZHANG Qingsong, ZHANG Lianzhen, LI Peng, FENG Xiao. New progress in grouting reinforcement theory of water-rich soft stratum in underground engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 47 -57 .
[5] XIA Kaiwen, XU Ying, CHEN Rong. Dynamic tests of rocks subjected to simulated deep underground environments[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 58 -75 .
[6] HONG Kairong. Study on rock breaking and wear of TBM hob in high-strength high-abrasion stratum[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 76 -85 .
[7] TAN Zhongsheng. Application experimental study of high-strength lattice girders with heat treatment in tunnel engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 86 -92 .
[8] CHEN Jianxun, LUO Yanbin. The stability of structure and its control technology for lager-span loess tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 93 -101 .
[9] JING Hongwen, YU Liyuan, SU Haijian, GU Jincai, YIN Qian. Development and application of catastrophic experiment system for water inrush in surrounding rock of deep tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 102 -110 .
[10] LI Tianbin, WU Chendi, MENG Lubo, GAO Meiben. Study on dynamic analysis and comprehensive warning method of tunnel collapse[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 111 -118 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn