Please wait a minute...
 
隧道与地下工程灾害防治  2020, Vol. 2 Issue (3): 67-76    
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
砂土隧道开挖地层变形规律及影响因素分析
房倩1,杜建明1,王赶1,王中举2,王官清1
1. 北京交通大学隧道及地下工程教育部工程研究中心, 北京 100044;2.中铁第四勘察设计研究院集团有限公司, 湖北 武汉 430063
Stratum deformation laws and influence factors analysis of tunnel excavation in sand
FANG Qian1, DU Jianming1, WANG Gan1, WANG Zhongju2,WANG Guanqing1
1. Tunnel and Underground Engineering Research Center of Ministry of Education, Beijing Jiaotong University, Beijing 100044, China;
2. China Railway Siyuan Survey and Design Group Co., LTD., Wuhan 430063, Hubei, China
下载:  PDF (39859KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对目前砂土地层圆形隧道施工中易于塌方的工程难题,结合物理模型试验结果,采用PFC2D对砂土地层变形规律进行数值模拟,并分析隧道埋深、地层损失率、颗粒粒径以及级配对砂土地层变形的影响。结果表明,砂土圆形隧道施工产生的扰动力传递是一个渐变过程;隧道埋深越大,沉降槽宽度越大,地表最大沉降越小,越易形成完整的拱形稳定区和“Λ”型失稳区;地层损失率越高,沉降槽宽度和地表最大沉降越大,且地层损失率与地表最大沉降之间存在明显的线性关系;土体颗粒直径越大,沉降槽宽度越大,地表最大沉降越小,扰动力传递越快,拱形稳定区越不易形成;而颗粒级配对沉降槽宽度与地表最大沉降影响不显著。上述研究成果对砂土地层圆形隧道施工具有重要的借鉴意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
房倩
杜建明
王赶
王中举
王官清
关键词:  圆形隧道  地表变形  砂土  数值模拟    
Abstract: Aiming at the engineering problems of collapse caused by circular tunnel construction in sand, the influences of cover depths, ground loss ratio, particle size and gradation on the stratum deformation in sand were numerically simulated by PFC2D based on the physical model test results. The results showed that the transmission of disturbance force, which was caused by the circular tunnel construction in sand, was a gradual process, the deeper the buried depth was, the larger the width of settlement trough was, the smaller the maximum settlement value of the ground surface was, and the easier to form the completed arch-shaped stable zone and the “Λ” instability zone; the settlement trough width and the maximum settlement value of the ground surface became large with the increase of the ground loss ratio and there was a linear relationship between the ground loss ratio and the maximum settlement value of the ground surface; the larger the particle size was, the larger the width of settlement trough was, the smaller the maximum settlement value of the ground surface, the faster the disturbance force transmit and the less likely to form the arched stable zone; the influence of particle gradation on the settlement trough width and the maximum settlement value of the ground surface was not significant. The results are of great reference significance for the circular tunnel construction in sand.
Key words:  circular tunnel    stratum deformation    sand    numerical simulation
收稿日期:  2020-06-18      发布日期:  2020-09-20     
中图分类号:  TU453  
基金资助: 国家自然科学基金高铁联合基金重点支持资助项目(U1934210);北京市自然科学基金资助项目(8202037)
作者简介:  房倩(1983— ),男,山东淄博人,博士,教授,博士生导师,主要研究方向为隧道工程. E-mail: qfang@bjtu.edu.cn
引用本文:    
房倩, 杜建明, 王赶, 王中举, 王官清. 砂土隧道开挖地层变形规律及影响因素分析[J]. 隧道与地下工程灾害防治, 2020, 2(3): 67-76.
FANG Qian, DU Jianming, WANG Gan, WANG Zhongju, WANG Guanqing. Stratum deformation laws and influence factors analysis of tunnel excavation in sand. Hazard Control in Tunnelling and Underground Engineering, 2020, 2(3): 67-76.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2020/V2/I3/67
[1] 王梦恕. 隧道及地下工程技术及发展[M]. 北京: 北京交通大学出版社, 2004. WANG Mengshu. Tunnel and underground engineering technology and development[M]. Beijing: Beijing Jiaotong University Press, 2004.
[2] PECK R B. Deep excavations and tunneling in soft ground [C] //Proceedings of the 7th International Conference on Soil Mechanics and Foundation Engineering. Mexico City, Mexico:[s.n.] , 1969: 225-290.
[3] MAIR R J, TAYLOR R N, BRACEGIRDLE A. Subsurface settlement profiles above tunnels in clays[J]. Gotechnique, 1993, 43(2): 315-320.
[4] CELESTINO T B, GOMES R A M P, BORTOLUCCI A A. Errors in ground distortions due to settlement trough adjustment[J]. Tunnelling and Underground Space Technology, 2000, 15(1):97-100.
[5] OSMAN A S, MAIR R J, BOLTON M D. On the kinematics of 2D tunnel collapse in undrained clay[J]. Gotechnique, 2006, 56(9): 585-595.
[6] 唐晓武,朱季,刘维.盾构施工过程中的土体变形研究[J]. 岩石力学与工程学报, 2010, 29(2): 206-211. TANG Xiaowu, ZHU Ji, LIU Wei. Research on soil deformation during shield construction process[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(2): 206-211.
[7] 韩凯航, 张成平, 王梦恕. 浅埋隧道围岩及位移的显示解析解[J]. 岩土工程学报, 2014, 36(12): 2253-2259. HAN Kaihang, ZHANG Chengping, WANG Mengshu. Explicit analytical solutions for stress and displacement of surrounding rock in shallow tunnels[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(12): 2253-2259.
[8] 林存刚, 夏唐代, 梁荣柱, 等. 盾构掘进地面沉降虚拟镜像算法[J]. 岩土工程学报, 2014, 36(8): 1438-1446. LIN Cungang, XIA Tangdai, LIANG Rongzhu, et al. Estimation of shield tunneling-induced ground surface settlements by virtual image technique[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(8): 1438-1446.
[9] BOBET A. Analytical solutions for shallow tunnels in saturated ground[J]. Journal of Engineering Mechanics, 2001, 127(12): 1258-1266.
[10] CHOU W I, BOBET A. Prediction of ground deformations in shallow tunnels in clays[J]. Tunnelling and Underground Space Technology, 2002, 17(1): 3-19.
[11] 韩煊, 李宁, STANGING J R. Peck公式在我国隧道施工地面变形预测中的适用性分析[J]. 岩土力学, 2007(1): 23-28. HAN Xuan, LI Ning, STANGING J R. An adaptability study of Gaussian equation applied to predicting ground settlements induced by tunneling in China[J]. Rock and Soil Mechanics, 2007(1): 23-28.
[12] 邓崴, 潘建平, 曾雅钰琼. 砂黏复合地层盾构隧道施工地表横向沉降分析[J]. 科学技术与工程, 2019, 19(18):271-275. DENG Wei, PAN Jianping, ZENG Yayuqiong. Analysis on the lateral subsidence of surface in shield tunneling construction of sand-clay composite stratum[J]. Science Technology and Engineering, 2019, 19(18):271-275.
[13] 肖晓春. 新加坡地铁C855标盾构隧道开挖面稳定性分析及泥水压力设定[J]. 现代隧道技术, 2012, 49(1):20-26. XIAO Xiaochun. Analysis of the excavation face stability and slurry pressure setting in the Singapore Metro Lot C855 [J]. Modern Tunnelling Technology, 2012, 49(1):20-26.
[14] 胡长明, 冯超, 梅源, 等. 西安富水砂层盾构施工Peck沉降预测公式改进[J]. 地下空间与工程学报, 2018, 14(1):176-181. HU Changming, FENG Chao, MEI Yuan, et al. Modifying of Peck’s settlement calculation formula related to metro tunnel construction in xi'an water-rich sand[J]. Chinese Journal of Underground Space and Engineering, 2018, 14(1):176-181.
[15] 王正兴, 缪林昌, 王冉冉, 等. 砂土中隧道施工引起土体内部沉降规律特征的室内模型试验研究[J]. 土木工程学报, 2014, 47(5):133-139. WANG Zhengxing, MIAO Linchang, WANG Ranran, et al. Physical model study on subsurface settlement by tunnelling in sand[J]. China Civil Engineering Journal, 2014, 47(5):133-139.
[16] 王海涛, 金慧, 涂兵雄, 等. 砂土地层地铁盾构隧道施工对地层沉降影响的模型试验研究[J]. 中国铁道科学,2017, 38(6):70-78. WANG Haitao, JIN Hui, TU Bingxiong, et al. Model test study on influence of ground settlement caused by shield tunnel construction in sand stratum[J]. China Railway Science, 2017, 38(6):70-78.
[17] 陶力铭, 陈中天, 王宇皓, 等. 砂性地层中地层损失引起的地表沉降模型试验[J]. 现代隧道技术, 2018, 55(增刊2):369-374. TAO Liming, CHEN Zhongtian, WANG Yuhao, et al. Model tests of the relationship between ground loss and surface settlement caused by shield tunnelling in sand soils[J]. Modern Tunnelling Technology, 2018, 55(Suppl.2):369-374.
[18] 武文安, 黄晓康, 卢坤林. 合肥盾构地表沉降和土压力变化模型试验[J]. 减灾防灾工程学报, 2017, 37(6):916-922. WU Wenan, HUANG Xiaokang, LU Kunlin. Model test on surface settlement and earth pressure in Hefei city shield tunneling[J]. Journal of Disaster Prevention and Mitigation Engineering, 2017, 37(6):916-922.
[19] 朱逢斌, 缪林昌, 林水仙. 盾构隧道动态施工诱发地面沉降试验研究[J]. 中国安全科学学报, 2017, 27(11):116-120. ZHU Fengbin, MIAO Linchang, LIN Shuixian. Experimental study on ground settlement caused by dynamic shield tunneling[J]. China Safety Science Journal, 2017, 27(11): 116-120.
[20] MOUSSAEI N, KHOSRAVI H M, HOSSAINI F M. Physical modeling of tunnel induced displacement in sandy grounds[J]. Tunnelling and Underground Space Technology, 2019, 90:19-27.
[21] 王俊, 何川, 王闯, 等. 砂土地层土压盾构隧道施工掌子面稳定性研究[J]. 岩土工程学报, 2018, 40(1):177-185. WANG Jun, HE Chuan, WANG Chuang, et al. Face stability analysis of EPB shield tunnel in sand[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(1):177-185.
[22] 王俊, 林国进, 唐协, 等. 砂土地层盾构隧道稳定性三维离散元研究[J]. 西南交通大学学报, 2018, 53(2): 312-321. WANG Jun, LIN Guojin, TANG Xie, et al. Face stability analysis of shield tunnel in sandy ground using 3D DEM[J]. Journal of Southwest Jiaotong University, 2018, 53(2): 312-321.
[23] 王振飞, 张成平. 泥水盾构开挖面失稳破坏的颗粒流模拟研究[J]. 中国铁道科学, 2017, 38(3):55-62. WANG Zhenfei, ZHANG Chenping. Research on particle flow simulation for excavation face instability of slurry shield[J]. China Railway Science, 2017, 35(3):55-62.
[24] CHEN R P, TANG L J, LING D S, et al. Face stability analysis of shallow shield tunnels in dry sandy ground using the discrete element method[J]. Computers and Geotechnics, 2011, 38(2):187-195.
[25] MELIS MAYNAR M J, MEDINA RODRIGUEZ L E. Discrete numerical model for analysis of earth pressure balance tunnel excavation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(10): 1234-1242.
[26] POTYONDY D O. A bonded-particle model for rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(8): 1329-1364.
[1] 王伟, 刘英, 庄海洋, 赵凯, 陈国兴. 考虑内部结构的大直径盾构隧道抗震性能[J]. 隧道与地下工程灾害防治, 2023, 5(3): 78-85.
[2] 胡记磊, 张缜, 杨兵. 临空液化场地中地铁车站侧移及上浮规律[J]. 隧道与地下工程灾害防治, 2023, 5(3): 52-62.
[3] 禹海涛, 朱晨阳. 基于BP神经网络的圆形隧道地震响应预测方法及参数分析[J]. 隧道与地下工程灾害防治, 2023, 5(3): 19-26.
[4] 孙港, 王军祥, 孟祥竹, 郭连军, 孙杰. 基于近场动力学理论的岩石双孔爆破动态断裂行为数值模拟[J]. 隧道与地下工程灾害防治, 2023, 5(2): 42-58.
[5] 黄兴, 张炜, 殷建钢, 施皓, 张晓磊. 填埋场扩建后下穿隧道结构的安全性[J]. 隧道与地下工程灾害防治, 2023, 5(1): 55-63.
[6] 赵兴东, 窦翔, 李勇, 王立君. 基于Ventsim的地下水封洞库建造期通风方式优选[J]. 隧道与地下工程灾害防治, 2023, 5(1): 8-17.
[7] 党晓宇, 马劲松. 基于桩板组合结构等代仰拱的公路隧道加固方案[J]. 隧道与地下工程灾害防治, 2023, 5(1): 90-96.
[8] 王智, 吴洋, 朱先发, 邓人铭, 张冰利. 基于亚塑性本构模型的砂土剪切特性分析[J]. 隧道与地下工程灾害防治, 2022, 4(4): 59-67.
[9] 关振长, 周宇轩, 吕春波, 吕荔炫. 空气间隔装药周边眼爆破精细化数值模拟[J]. 隧道与地下工程灾害防治, 2022, 4(4): 11-19.
[10] 丁智, 李鑫家, 张霄. 基于机器学习的盾构掘进地表变形预测研究与展望[J]. 隧道与地下工程灾害防治, 2022, 4(3): 1-9.
[11] 李相兵, 梁波, 鲁思源. 考虑多因素影响的双侧壁导坑法施工参数研究[J]. 隧道与地下工程灾害防治, 2022, 4(2): 39-48.
[12] 黄昕, 谷冠思, 张子新, 李昀. 考虑渗流的泥水平衡盾构隧道稳定性数值模拟[J]. 隧道与地下工程灾害防治, 2022, 4(2): 28-38.
[13] 石宗涛. 济南黄河隧道泥水盾构开挖面稳定性分析[J]. 隧道与地下工程灾害防治, 2022, 4(1): 71-77.
[14] 李钊, 梁庆国, 孙文, 曹小平. 隧道台阶法施工上台阶长度对隧道变形的影响[J]. 隧道与地下工程灾害防治, 2022, 4(1): 55-62.
[15] 曹成威, 石钰锋, 徐长节, 侯世磊, 龚宏华, 纪松岩. 某明挖深基坑地下连续墙非对称配筋优化设计[J]. 隧道与地下工程灾害防治, 2022, 4(1): 63-70.
[1] QIAN Qihu. Scientific use of the urban underground space to construction the harmonious livable and beautiful city[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 1 -7 .
[2] DENG Mingjiang, LIU Bin. Challenges, countermeasures and development direction of geological forward-prospecting for TBM cluster tunneling in super-long tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 8 -19 .
[3] DING Xiuli, ZHANG Yuting, ZHANG Chuanjian, YAN Tianyou, HUANG Shuling. Review on countermeasures and their adaptability evaluation to tunnels crossing active faults[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 20 -35 .
[4] JIAO Yuyong, ZHANG Weishe, OU Guangzhao, ZOU Junpeng, CHEN Guanghui. Review of the evolution and mitigation of the water-inrush disaster in drilling-and-blasting excavated deep-buried tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 36 -46 .
[5] ZHANG Qingsong, ZHANG Lianzhen, LI Peng, FENG Xiao. New progress in grouting reinforcement theory of water-rich soft stratum in underground engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 47 -57 .
[6] XIA Kaiwen, XU Ying, CHEN Rong. Dynamic tests of rocks subjected to simulated deep underground environments[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 58 -75 .
[7] HONG Kairong. Study on rock breaking and wear of TBM hob in high-strength high-abrasion stratum[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 76 -85 .
[8] TAN Zhongsheng. Application experimental study of high-strength lattice girders with heat treatment in tunnel engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 86 -92 .
[9] CHEN Jianxun, LUO Yanbin. The stability of structure and its control technology for lager-span loess tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 93 -101 .
[10] JING Hongwen, YU Liyuan, SU Haijian, GU Jincai, YIN Qian. Development and application of catastrophic experiment system for water inrush in surrounding rock of deep tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 102 -110 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn