Please wait a minute...
 
隧道与地下工程灾害防治  2022, Vol. 4 Issue (2): 28-38    DOI: 10.19952/j.cnki.2096-5052.2022.02.04
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
考虑渗流的泥水平衡盾构隧道稳定性数值模拟
黄昕1,谷冠思1,张子新1,李昀2
1.同济大学土木工程学院地下建筑与工程系, 上海 200092;2.中船第九设计研究院工程有限公司, 上海 200063
Numerical simulation of stability of slurry pressure-balanced shield tunneling considering seepage effect
HUANG Xin1, GU Guansi1, ZHANG Zixin1, LI Yun2
1. Department of Geotechnical Engineering, College of Civil Engineering, Tongji University, Shanghai 200092, China;
2. China Shipbuilding NDRI Engineering Co., Ltd., Shanghai 200063, China
下载:  PDF (13715KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为探究高水压环境下泥水平衡盾构隧道施工对地层响应的影响,通过建立三维流固耦合精细化有限元模型,系统分析不同上覆水深度和渗透系数下泥水盾构隧道连续开挖地层的稳定性,获得盾体就位、连续开挖、停机稳定等不同施工阶段水下盾构隧道开挖引起的渗流场和位移场的演化模式。研究结果表明:在上海等软土地区进行水下隧道施工时,可将40 m水头视作高低水压的分界阈值,水头低于和高于该阈值时渗流场及变形场呈现不同的演化特征,且在低渗透地层差异更加明显;渗流导致地层超孔隙水压力的变化,进而对地层变形产生较大影响,考虑渗流条件的开挖面最大变形约为不考虑渗流条件的1.4倍;高水压作用下地层的变形受渗流效应的影响,低水压条件下地层的变形受盾构掘进参数如注浆压力的控制。本研究可为水下盾构隧道工程的施工安全控制提供一定的参考依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄昕
谷冠思
张子新
李昀
关键词:  泥水平衡盾构隧道  数值模拟  高水压  渗流场  沉降槽    
Abstract: In order to explore the impact of slurry pressure-balanced(SPB)shield tunneling on the ground response in high water pressure environment, this research systematically analyzed the ground stability subject to continuous excavation of SPB shield tunnel considering different overlying water heights and permeability coefficients by means of refined three-dimensional finite element numerical models. The evolutions of seepage and displacement fields at different stages of underwater shield tunneling, including shield placement, continuous excavation and stoppage, were obtained. It was found that for tunneling project in soft soil areas such as Shanghai, 40 m could be regarded as the threshold value distinguishing high and low water pressures. The seepage and deformation fields would show different evolution laws between cases with the water head higher than this threshold and cases with the water head lower than this threshold, and the difference could be more obvious in low permeable stratum. Seepage led to the change of ground's excess pore water pressure field, which further affected the ground displacement field. The largest deformation at the excavation face with seepage effect was about 1.4 times of that without seepage effect. The ground deformation under high water pressure condition was affected by the seepage effect, while the ground deformation under low water pressure condition was dominated by tunneling parameters, such as the grouting pressure. The aforementioned observations could provide useful guidance for the safety control of underwater shield tunneling.
Key words:  slurry pressure-balanced shield tunnel    numerical simulation    high water pressure    seepage field    settlement trough
收稿日期:  2021-10-21      修回日期:  2021-12-18      发布日期:  2022-06-20     
中图分类号:  U45  
基金资助: 上海市科技创新行动计划资助项目(19DZ1201004);国家自然科学基金面上资助项目(41877227)
作者简介:  黄昕(1985— ),男,福建南平人,博士,副教授,博士生导师,主要研究方向为隧道施工安全及结构设计理论. E-mail:xhuang@tongji.edu.cn
引用本文:    
黄昕, 谷冠思, 张子新, 李昀. 考虑渗流的泥水平衡盾构隧道稳定性数值模拟[J]. 隧道与地下工程灾害防治, 2022, 4(2): 28-38.
HUANG Xin, GU Guansi, ZHANG Zixin, LI Yun. Numerical simulation of stability of slurry pressure-balanced shield tunneling considering seepage effect. Hazard Control in Tunnelling and Underground Engineering, 2022, 4(2): 28-38.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2022/V4/I2/28
[1] 朱伟, 钱勇进, 闵凡路, 等. 中国泥水盾构使用现状及若干问题[J]. 隧道建设(中英文), 2019,39(5): 724-735. ZHU Wei, QIAN Yongjin, MIN Fanlu, et al. The current status and some problems of slurry shield in China [J]. Tunnel Construction, 2019, 39(5): 724-735.
[2] 李昀, 张子新, 张冠军. 泥水平衡盾构开挖面稳定模型试验研究[J]. 岩土工程学报, 2007, 29(7): 1074-1079. LI Yun, ZHANG Zixin, ZHANG Guanjun. Laboratory study on face stability mechanism of slurry shields[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(7):1074-1079.
[3] 沈翔, 袁大军, 吴俊, 等. 高水压泥水平衡盾构掘进模型试验平台的研制与应用[J]. 中国公路学报, 2020, 33(12): 164-175. SHEN Xiang, YUAN Dajun, WU Jun, et al. Development and application of model test platform for slurry balance shield under high water pressure[J]. China Journal of Highway and Transport, 2020, 33(12): 164-175.
[4] LÜ X, ZHOU Y C, HUANG M S, et al. Experimental study of the face stability of shield tunnel in sands under seepage condition[J]. Tunnelling and Underground Space Technology, 2018, 74: 195-205.
[5] 高新强, 仇文革, 孔超. 高水压隧道修建过程中渗流场变化规律试验研究[J]. 中国铁道科学, 2013, 34(1): 50-58. GAO Xinqiang, QIU Wenge, KONG Chao. Test study on the variation law of seepage field during the construction process of high water pressure tunnel[J]. China Railway Science, 2013, 34(1): 50-58.
[6] 王焕. 大直径泥水盾构穿越无加固条件沉降敏感带扰动控制技术研究[J]. 隧道与地下工程灾害防治, 2019, 1(2): 107-113. WANG Huan. Disturbance control technology for large diameter slurry shield crossing the sensitive zone without reinforcement conditions[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(2): 107-113.
[7] 李雪, 周顺华, 宫全美, 等. 大断面深埋高水压地铁盾构隧道周边土压力作用模式评价[J]. 岩土力学, 2015, 36(5): 1415-1420. LI Xue, ZHOU Shunhua, GONG Quanmei, et al. Evaluation of earth pressure around a deeply buried metro shield tunnel with a large cross-section under high water pressure conditions[J]. Rock and Soil Mechanics, 2015, 36(5): 1415-1420.
[8] SHI C H, CAO C Y, LEI M F, et al. Face stability analysis of shallow underwater tunnels in fractured zones[J]. Arabian Journal of Geosciences, 2015, 9(1): 1-11.
[9] HAN K H, ZHANG C P, ZHANG D L. Upper-bound solutions for the face stability of a shield tunnel in multilayered cohesive-frictional soils[J]. Computers and Geotechnics, 2016, 79: 1-9.
[10] CHEN G H, ZOU J F, CHEN J Q. Shallow tunnel face stability considering pore water pressure in non-homogeneous and anisotropic soils[J]. Computers and Geotechnics, 2019, 116: 103205.
[11] ZOU J F, QIAN Z H, XIANG X H, et al. Face stability of a tunnel excavated in saturated nonhomogeneous soils[J]. Tunnelling and Underground Space Technology, 2019, 83: 1-17.
[12] HUANG Q, ZOU J F, QIAN Z H. Face stability analysis for a longitudinally inclined tunnel in anisotropic cohesive soils[J]. Journal of Central South University, 2019, 26(7): 1780-1793.
[13] LIU W, ALBERS B, ZHAO Y, et al. Upper bound analysis for estimation of the influence of seepage on tunnel face stability in layered soils[J]. Journal of Zhejiang University: Science A, 2016, 17(11): 886-902.
[14] 郑永来, 冯利坡, 邓树新, 等. 高水压条件下盾构隧道开挖面极限上限法研究[J]. 同济大学学报(自然科学版), 2013, 41(8): 1179-1184. ZHENG Yonglai, FENG Lipo, DENG Shuxin, et al. Study on upper-bound limit method of face stability of shield tunnel with high-water pressure[J]. Journal of Tongji University(Natural Science), 2013, 41(8): 1179-1184.
[15] YANG X L, ZHONG J H. Stability analysis of tunnel face in nonlinear soil under seepage flow[J]. KSCE Journal of Civil Engineering, 2019, 23(10): 4553-4563.
[16] 肖鹏飞, 冯光福, 贾少东, 等. 近距离下穿车站富水圆砾地层盾构隧道开挖面稳定性研究[J]. 隧道与地下工程灾害防治, 2021, 3(1): 75-81. XIAO Pengfei, FENG Guangfu, JIA Shaodong, et al. Research on stability of excavation face of shield tunnel undercrossing station in water-rich gravel stratum[J]. Hazard Control in Tunnelling and Underground Engineering, 2021, 3(1): 75-81.
[17] 陈孟乔, 刘建坤, 肖军华, 等. 高水压条件下泥水盾构隧道开挖面支护压力特性分析[J]. 岩土工程学报, 2013, 35(增刊2): 163-169. CHEN Mengqiao, LIU Jiankun, XIAO Junhua, et al. Face supporting pressure of slurry shield tunnel under high hydraulic pressure[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(Suppl.2): 163-169.
[18] BONKINPILLEWAR P D, KULKARNI A, PANCHAGNULA M V, et al. A novel coupled fluid-particle DEM for simulating dense granular slurry dynamics[J]. Granular Matter, 2015, 17(4): 511-521.
[19] ZHAO J D, SHAN T. Coupled CFD-DEM simulation of fluid-particle interaction in geomechanics[J]. Powder Technology, 2013, 239: 248-258.
[20] WU L, GUAN T M, LEI L. Discrete element model for performance analysis of cutterhead excavation system of EPB machine[J]. Tunnelling and Underground Space Technology, 2013, 37: 37-44.
[21] GOUET-KAPLAN M, BERKOWITZ B. Measurements of interactions between resident and infiltrating water in a lattice micromodel[J]. Vadose Zone Journal, 2011, 10(2): 624-633.
[22] PECK R B. Deep excavations and tunneling in soft ground[C] //Proceedings of the 7th International Conference on Soil Mechanics and Foundation Engineering. Mexico City, Mexico: [s. n.] , 1969: 225-290.
[1] 孙港, 王军祥, 孟祥竹, 郭连军, 孙杰. 基于近场动力学理论的岩石双孔爆破动态断裂行为数值模拟[J]. 隧道与地下工程灾害防治, 2023, 5(2): 42-58.
[2] 黄兴, 张炜, 殷建钢, 施皓, 张晓磊. 填埋场扩建后下穿隧道结构的安全性[J]. 隧道与地下工程灾害防治, 2023, 5(1): 55-63.
[3] 赵兴东, 窦翔, 李勇, 王立君. 基于Ventsim的地下水封洞库建造期通风方式优选[J]. 隧道与地下工程灾害防治, 2023, 5(1): 8-17.
[4] 党晓宇, 马劲松. 基于桩板组合结构等代仰拱的公路隧道加固方案[J]. 隧道与地下工程灾害防治, 2023, 5(1): 90-96.
[5] 关振长,周宇轩,吕春波,吕荔炫. 空气间隔装药周边眼爆破精细化数值模拟[J]. 隧道与地下工程灾害防治, 2022, 4(4): 11-19.
[6] 李相兵,梁波,鲁思源. 考虑多因素影响的双侧壁导坑法施工参数研究[J]. 隧道与地下工程灾害防治, 2022, 4(2): 39-48.
[7] 石宗涛. 济南黄河隧道泥水盾构开挖面稳定性分析[J]. 隧道与地下工程灾害防治, 2022, 4(1): 71-77.
[8] 李钊, 梁庆国, 孙文, 曹小平. 隧道台阶法施工上台阶长度对隧道变形的影响[J]. 隧道与地下工程灾害防治, 2022, 4(1): 55-62.
[9] 曹成威, 石钰锋, 徐长节, 侯世磊, 龚宏华, 纪松岩. 某明挖深基坑地下连续墙非对称配筋优化设计[J]. 隧道与地下工程灾害防治, 2022, 4(1): 63-70.
[10] 房倩, 杜建明, 王赶, 杨晓旭. 模型边界对圆形隧道开挖引起地表沉降的影响分析[J]. 隧道与地下工程灾害防治, 2022, 4(1): 10-17.
[11] 赵高峰,徐志超,郝益民,扈晓冬,邓稀肥. 基于4D-LSM的隧道围岩爆破振动和损伤判定研究[J]. 隧道与地下工程灾害防治, 2021, 3(3): 11-19.
[12] 夏英杰, 孟庆坤, 唐春安, 张永彬, 赵丹晨, 赵振兴. 岩石破裂过程分析方法在隧道工程模拟中的应用[J]. 隧道与地下工程灾害防治, 2021, 3(3): 36-49.
[13] 黄笑, 肖培伟, 董林鹭, 杨兴国, 徐奴文. 高地应力地下洞室群开挖过程岩体力学响应及破坏机制[J]. 隧道与地下工程灾害防治, 2021, 3(3): 85-93.
[14] 张鸿勇, 张艳杰, 刘春, 施斌, 曹政. 基于离散元孔隙密度流法的地铁隧道收敛变形注浆整治分析[J]. 隧道与地下工程灾害防治, 2021, 3(3): 100-110.
[15] 乔雄,倪伟淋,骆维斌,刘文高. 三车道公路岩土混合隧道单侧壁导坑法快速施工[J]. 隧道与地下工程灾害防治, 2021, 3(2): 33-42.
[1] QIAN Qihu. Scientific use of the urban underground space to construction the harmonious livable and beautiful city[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 1 -7 .
[2] DENG Mingjiang, LIU Bin. Challenges, countermeasures and development direction of geological forward-prospecting for TBM cluster tunneling in super-long tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 8 -19 .
[3] DING Xiuli, ZHANG Yuting, ZHANG Chuanjian, YAN Tianyou, HUANG Shuling. Review on countermeasures and their adaptability evaluation to tunnels crossing active faults[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 20 -35 .
[4] JIAO Yuyong, ZHANG Weishe, OU Guangzhao, ZOU Junpeng, CHEN Guanghui. Review of the evolution and mitigation of the water-inrush disaster in drilling-and-blasting excavated deep-buried tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 36 -46 .
[5] ZHANG Qingsong, ZHANG Lianzhen, LI Peng, FENG Xiao. New progress in grouting reinforcement theory of water-rich soft stratum in underground engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 47 -57 .
[6] XIA Kaiwen, XU Ying, CHEN Rong. Dynamic tests of rocks subjected to simulated deep underground environments[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 58 -75 .
[7] HONG Kairong. Study on rock breaking and wear of TBM hob in high-strength high-abrasion stratum[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 76 -85 .
[8] TAN Zhongsheng. Application experimental study of high-strength lattice girders with heat treatment in tunnel engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 86 -92 .
[9] CHEN Jianxun, LUO Yanbin. The stability of structure and its control technology for lager-span loess tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 93 -101 .
[10] JING Hongwen, YU Liyuan, SU Haijian, GU Jincai, YIN Qian. Development and application of catastrophic experiment system for water inrush in surrounding rock of deep tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 102 -110 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn