Please wait a minute...
 
隧道与地下工程灾害防治  2022, Vol. 4 Issue (3): 77-91    DOI: 10.19952/j.cnki.2096-5052.2022.03.06
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
盾构隧道接缝渗漏水诱发既有管线变形模型试验
张治国1,2,3,4,5,程志翔1,陈杰1,吴钟腾2,3,李云正1
1. 上海理工大学环境与建筑学院, 上海 200093;2. 自然资源部丘陵山地地质灾害防治重点实验室, 福建 福州 350116;3. 福建省地质灾害重点实验室, 福建 福州 350116;4. 国家海洋局北海预报中心, 山东 青岛 266061;5. 山东省海洋生态环境与防灾减灾重点实验室, 山东 青岛 266061
Model test on deformation of existing pipeline induced by joint leakage of shield tunnels
ZHANG Zhiguo1,2,3,4,5, CHENG Zhixiang1, CHEN Jie1, WU Zhongteng2,3, LI Yunzheng1
1. School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China;
2. Key Laboratory of Geohazard Prevention of Hilly Mountains, Ministry of Natural Resources, Fuzhou 350116, Fujian, China;
3. Fujian Key Laboratory of Geohazard Prevention, Fuzhou 350116, Fujian, China;
4. North Sea Marine Forecast Center of State Oceanic Administration, Qingdao 266061, Shandong, China;
5. Shandong Provincial Key Laboratory of Marine Ecological Environment and Disaster Prevention and Mitigation, Qingdao 266061, Shandong, China
下载:  PDF (24286KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 基于临界漏缝宽度,建立盾构隧道接缝渗漏水诱发邻近地下管线变形的模型试验系统,包括盾构隧道与管线模型、盾构隧道接缝渗漏模拟装置、水位控制系统、数据采集系统等,研究漏缝位置、漏缝分布形式、覆土深度对管线变形沉降、管线内力和漏缝周围土体孔隙水压力的影响规律。试验结果表明:随着覆土深度不断增加,漏缝距离管线的垂直距离增加,且富水砂层将产生更大的应力支撑上部水土压力,管线沉降变形及内力不断减小;相同覆土深度条件下,随着漏缝位置向拱底发生偏移,管线沉降变形峰值及内力峰值逐渐减小,所对应位置逐渐远离隧道中心轴线,漏缝一侧上方管线沉降变形明显,影响范围扩大;单侧漏缝数量增多,新增漏缝位置越靠近拱顶,管线沉降变形及内力增幅越大;双侧对称漏缝工况下,管线沉降变形及内力关于隧道中心轴线对称;双侧非对称漏缝工况下,管线沉降变形及内力关于隧道中心轴线呈明显的非对称性。监测孔隙水压力可以合理地解释盾构隧道漏缝周围土体渗流场的分布情况,越靠近漏缝位置,监测孔隙水压力越小,消散孔隙水压力越大,水总是从孔压高的位置流向孔压低的位置。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张治国
程志翔
陈杰
吴钟腾
李云正
关键词:  盾构隧道  接缝渗漏水  临界漏缝宽度  管线沉降变形  模型试验    
Abstract: Based on the critical leakage width, a model test system of adjacent pipelines deformation induced by the joint leakage of shield tunnel was established, including the shield tunnel and pipeline model, simulation device of shield tunnel joint leakage, water level control system, and data acquisition system, the influences of the position, distribution and depth of the leakage on the deformation and settlement of the pipeline, the internal force of the pipeline and the pore water pressure of the soil around the leakage were studied. The results showed that with the increasing of the depth of the overburden soil, the vertical distance between the leak and the pipeline increased, and the water-rich sand layer would produce more soil and water pressure on the upper part of the support, and the settlement deformation and internal force of the pipeline would decrease under the condition of the same depth of overburden soil, the peak value of settlement and internal force of the pipeline decreased gradually as the position of the leakage seam deviated to the bottom of the arch, the corresponding position gradually moved away from the central axis of the tunnel, and the settlement deformation of the pipeline above the leakage seam side was obvious, the settlement deformation and internal force increase with the increased of the number of the single side leakage, the location of the new leakage was close to the arch crown under the condition of bilateral asymmetric leakage, the settlement deformation and internal force of the pipeline were obviously asymmetric with respect to the central axis of the tunnel. The monitoring value of pore water pressure could reasonably explain the distribution of seepage field around the leakage of shield tunnel. The closer to the leakage location was, the smaller the monitoring value of pore water pressure and the larger the dissipation value of pore water pressure was, water always flowed from a high to a low pore pressure position.
Key words:  shield tunnel    joint leakage    critical leak width    settlement deformation of pipeline    model test
收稿日期:  2021-10-11      修回日期:  2021-11-10      发布日期:  2022-09-20     
中图分类号:  TU473  
基金资助: 国家自然科学基金资助项目(41772331,41977247,42177145);自然资源部丘陵山地地质灾害防治重点实验室(福建省地质灾害重点实验室)课题资助项目(FJKLGH2020K004);山东省海洋生态环境与防灾减灾重点实验室课题资助项目(201703)
作者简介:  张治国(1978— ),男,河北秦皇岛人,博士,教授,博士生导师,主要研究方向为地下工程. E-mail:zgzhang@usst.edu.cn
引用本文:    
张治国, 程志翔, 陈杰, 吴钟腾, 李云正. 盾构隧道接缝渗漏水诱发既有管线变形模型试验[J]. 隧道与地下工程灾害防治, 2022, 4(3): 77-91.
ZHANG Zhiguo, CHENG Zhixiang, CHEN Jie, WU Zhongteng, LI Yunzheng. Model test on deformation of existing pipeline induced by joint leakage of shield tunnels. Hazard Control in Tunnelling and Underground Engineering, 2022, 4(3): 77-91.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2022/V4/I3/77
[1] LAVER R G. Long-term behaviour of twin tunnels in London clay[D]. London, U K: Cambridge University, 2011.
[2] 马龙祥,张冬梅.软土盾构隧道稳定渗流分析[J]. 地下工程与空间学报, 2013, 9(1): 37-41. MA Longxiang, ZHANG Dongmei. Analytical prediction of water leakage into shield driven tunnel in saturated clay[J]. Chinese Journal of Underground Space and Engineering, 2013, 9(1): 37-41.
[3] 朱成伟,应宏伟,龚晓南. 任意埋深水下隧道渗流场解析解[J]. 岩土工程学报, 2017, 39(11): 1984-1991. ZHU Chengwei, YING Hongwei, GONG Xiaonan. Analytical solutions for seepage fields of underwater tunnels with arbitrary burial depth[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(11): 1984-1991.
[4] 张丙强,王启云,卢晓颖. 软土地层浅埋圆形隧道非达西渗流场解析研究[J]. 铁道工程学报, 2018, 39(12): 4377-4384. ZHANG Bingqiang, WANG Qiyun, LU Xiaoying. Analytical solution for non-Darcian seepage field of a shallow circular tunnel in soft soil[J]. Rock and Soil Mechanics, 2018, 39(12): 4377-4384.
[5] 贺志军,莫海强,邹金锋,等. 水下椭圆形隧道稳定渗流的近似解[J]. 铁道科学与工程学报, 2019, 16(9): 2265-2271. HE Zhijun, MO Haiqiang, ZOU Jinfeng, et al. Approximate analytical solutions for steady seepage into an underwater elliptical tunnel[J]. Journal of Railway Science and Engineering, 2019, 16(9): 2265-2271.
[6] 李林毅,阳军生,高超,等.考虑注浆圈作用的体外排水隧道渗流场解析研究[J]. 岩土工程学报, 2020, 42(1): 133-141. LI Linyi, YANG Junsheng, GAO Chao, et al. Analytical study on seepage field of tunnels with external drainage considering effect of grouting rings[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1): 133-141.
[7] WU H N, SHEN S L, CHEN R P, et al. Three-dimensional numerical modelling on localised leakage in segmental lining of shield tunnels[J]. Computers and Geotechnics, 2020, 112(6): 103549.
[8] 叶治,付岸然,刘华北. 盾构隧道拱顶渗流侵蚀对地表沉降及结构变形的影响[J]. 河海大学学报(自然科学版), 2021, 49(3): 279-287. YE Zhi, FU Anran, LIU Huabei. Effect of seepage erosion of tunnel crown on ground settlement and structural deformation in shield tunnelling[J]. Journal of Hohai University(Natural Sciences), 2021, 49(3): 279-287.
[9] LONG Y Y, LI G, TAN Y. Soil arching due to leaking of tunnel buried in water-rich sand[J]. Tunnelling and Underground Space Technology, 2020, 95(1): 103158.
[10] 张冬梅,高程鹏,尹振宇,等. 隧道渗流侵蚀的颗粒流模拟[J]. 岩土力学, 2017, 38(增刊1): 429-438. ZHANG Dongmei, GAO Chengpeng, YIN Zhenyu, et al. Particle flow simulation of seepage erosion around shield tunnel[J]. Rock and Soil Mechanic, 2017, 38(Suppl.1): 429-438.
[11] WANG Z, LI G, WANG A, et al. Numerical simulation study of stratum subsidence induced by sand leakage in tunnel lining based on particle flow software[J]. Geotechnical and Geological Engineering, 2020, 38(4): 3955-3965.
[12] 刘强,谭忠盛,王秀英. 水下隧道渗流场分布规律的模型试验研究[J]. 土木工程学报, 2015, 48(增刊1): 388-392. LIU Qiang, TAN Zhongsheng, WANG Xiuying. Model test study on the distribution law of underwater tunnel seepage field[J]. China Civil Engineering Journal, 2015, 48(Suppl.1): 388-392.
[13] 郑刚,戴轩,张晓双. 地下工程漏水漏砂灾害发展过程的试验研究及数值模拟[J]. 岩石力学与工程学报, 2014, 33(12): 2458-2471. ZHENG Gang, DAI Xuan, ZHENG Xiaoshuang. Experimental study and numerical simulation of leaking process of sand and water in underground engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(12): 2458-2471.
[14] 何勇兴. 地下管道漏损对周围土体侵蚀影响研究[D]. 杭州: 浙江大学, 2017. HE Yongxing. Study on the soil erosion around underground pipe leakage[D]. Hangzhou: Zhejiang University, 2017.
[15] 刘成禹,陈博文,罗洪林,等. 满流条件下管道破损诱发渗流侵蚀的试验研究[J]. 岩土力学, 2020, 41(1): 1-10. LIU Chengyu, CHEN Bowen, LUO Honglin, et al. Experimental study of seepage erosion induced by pipeline damage under full pipe flow condition[J]. Rock and Soil Mechanics, 2020, 41(1): 1-10.
[16] 刘成禹,陈博文,林炜,等. 地下管道破损诱发沉降的预测模型及试验验证[J]. 岩土工程学报, 2021, 43(3): 416-424. LIU Chengyu, CHEN Bowen, LIN Wei, et al. Prediction model for settlement caused by damage of underground pipelines and its experimental verification[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 416-424.
[17] 王翱翔. 砂土地层隧道衬砌漏砂(水)诱发地层塌陷的机理研究[D]. 大连: 大连交通大学, 2020. WANG Aoxiang. The mechanism study of strata subsidence induced by sand(water)leakage of tunnel lining in sandy stratum[D]. Dalian: Dalian Jiaotong University, 2020.
[18] 路平,陈灿,廖陈畅,等. 水下盾构隧道接缝渗漏规律的模型试验研究[J]. 岩石力学与工程学报, 2019, 38(5): 234-240. LU Ping, CHEN Can, LIAO Chenchang, et al. Model test on joint leakage in underwater shield tunnels[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(5): 234-240.
[19] WANG Z, LI G. Experimental study on stratigraphic subsidence induced by sand leakage in tunnel lining cracks[J]. KSCE Journal of Civil Engineering, 2020, 24(8): 2345-2352.
[20] 张成平,岳跃敬,蔡义. 管线渗漏水范围对浅埋隧道围岩变形和破坏的影响[J]. 岩石力学与工程学报, 2015, 34(2): 392-400. ZAHNG Chengping, YUE Yuejing, CAI Yi. Influence of pipeline leakage range on ground deformation and failure during shallow tunnelling[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(2): 392-400.
[21] 汪维东,黄晓康,朱大勇,等. 管线渗漏对地铁盾构影响的模型试验研究[J]. 合肥工业大学学报(自然科学版), 2021, 44(5): 666-671. WANG Weidong, HUANG Xiaokang, ZHU Dayong, et al. Model test of the effect of pipeline leakage on metro shield construction[J]. Journal of Hefei university of technology(Natural Sciences), 2021, 44(5): 666-671.
[1] 魏纲, 徐天宝, 张治国. 复杂应力路径下波纹钢加固盾构隧道数值分析[J]. 隧道与地下工程灾害防治, 2023, 5(2): 24-32.
[2] 王智, 刘祥勇, 朱先发, 洪小星, 沈一鸣, 张冰利. 小曲率半径隧道施工对盾构管片结构影响[J]. 隧道与地下工程灾害防治, 2023, 5(1): 45-54.
[3] 周旭明, 石钰锋, 张利敏, 张慧鹏, 曹成威, 陈昭阳. 边墙与仰拱连接处缺陷对隧道结构影响试验[J]. 隧道与地下工程灾害防治, 2023, 5(1): 74-80.
[4] 韩兴博,陈子明,苏恩杰,梁晓明,宋桂峰,叶飞. 盾构隧道围岩压力分布规律及作用模式[J]. 隧道与地下工程灾害防治, 2022, 4(4): 34-43.
[5] 喻伟,林赞权,朱彬彬,汪元冶,丁文其,乔亚飞,张晓东,龚琛杰. 盾构隧道防水密封垫材料的高温老化后性能[J]. 隧道与地下工程灾害防治, 2022, 4(4): 52-58.
[6] 潘秋景, 李晓宙, 黄杉, 汪来, 王树英, 方国光. 机器学习在盾构隧道智能施工中的应用——综述与展望[J]. 隧道与地下工程灾害防治, 2022, 4(3): 10-30.
[7] 丁智, 李鑫家, 张霄. 基于机器学习的盾构掘进地表变形预测研究与展望[J]. 隧道与地下工程灾害防治, 2022, 4(3): 1-9.
[8] 吕玺琳, 赵庾成, 曾盛. 砂层中盾构隧道开挖面稳定性物理模型试验[J]. 隧道与地下工程灾害防治, 2022, 4(3): 67-76.
[9] 赵辰洋, 罗毛毛, 邱静怡, 倪芃芃, 赵锋烽. 盾构隧道施工引起地层变形预测方法综述[J]. 隧道与地下工程灾害防治, 2022, 4(3): 31-46.
[10] 刘祥勇,张鑫,王军,赵涛宁,朱先发. 盾构施工对邻近建筑物群结构影响评价[J]. 隧道与地下工程灾害防治, 2022, 4(3): 99-106.
[11] 黄昕, 谷冠思, 张子新, 李昀. 考虑渗流的泥水平衡盾构隧道稳定性数值模拟[J]. 隧道与地下工程灾害防治, 2022, 4(2): 28-38.
[12] 许有俊, 王智广, 张旭, 郭飞, 高胜雷, 杨昆. 小转弯半径盾构隧道施工引起的地层变形特征[J]. 隧道与地下工程灾害防治, 2022, 4(2): 11-18.
[13] 陈峰军, 宗军良, 王祺, 禹海涛. 地面出入式超浅埋盾构隧道静力响应模型试验[J]. 隧道与地下工程灾害防治, 2022, 4(2): 66-72.
[14] 周勇, 李召峰, 左志武, 王川, 王钰鑫, 林春金, 张新, 张乾青, 姚望, 王凯. 桩侧注浆提升粉质黏土地层既有桩基承载力试验研究[J]. 隧道与地下工程灾害防治, 2022, 4(1): 38-47.
[15] 马少俊, 李鑫家, 王乔坎, 丁智. 某深基坑开挖对邻近既有盾构隧道影响实测分析[J]. 隧道与地下工程灾害防治, 2022, 4(1): 86-94.
[1] QIAN Qihu. Scientific use of the urban underground space to construction the harmonious livable and beautiful city[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 1 -7 .
[2] DENG Mingjiang, LIU Bin. Challenges, countermeasures and development direction of geological forward-prospecting for TBM cluster tunneling in super-long tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 8 -19 .
[3] DING Xiuli, ZHANG Yuting, ZHANG Chuanjian, YAN Tianyou, HUANG Shuling. Review on countermeasures and their adaptability evaluation to tunnels crossing active faults[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 20 -35 .
[4] JIAO Yuyong, ZHANG Weishe, OU Guangzhao, ZOU Junpeng, CHEN Guanghui. Review of the evolution and mitigation of the water-inrush disaster in drilling-and-blasting excavated deep-buried tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 36 -46 .
[5] ZHANG Qingsong, ZHANG Lianzhen, LI Peng, FENG Xiao. New progress in grouting reinforcement theory of water-rich soft stratum in underground engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 47 -57 .
[6] XIA Kaiwen, XU Ying, CHEN Rong. Dynamic tests of rocks subjected to simulated deep underground environments[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 58 -75 .
[7] HONG Kairong. Study on rock breaking and wear of TBM hob in high-strength high-abrasion stratum[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 76 -85 .
[8] TAN Zhongsheng. Application experimental study of high-strength lattice girders with heat treatment in tunnel engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 86 -92 .
[9] CHEN Jianxun, LUO Yanbin. The stability of structure and its control technology for lager-span loess tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 93 -101 .
[10] JING Hongwen, YU Liyuan, SU Haijian, GU Jincai, YIN Qian. Development and application of catastrophic experiment system for water inrush in surrounding rock of deep tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 102 -110 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn