Please wait a minute...
 
隧道与地下工程灾害防治  2022, Vol. 4 Issue (3): 99-106    DOI: 10.19952/j.cnki.2096-5052.2022.03.08
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
盾构施工对邻近建筑物群结构影响评价
刘祥勇1,张鑫2,3*,王军1,赵涛宁1,朱先发1
1. 南通城市轨道交通有限公司, 江苏 南通 226000;2. 同济大学地下建筑与工程系, 上海 200092;3. 同济大学岩土及地下工程教育部重点实验室, 上海 200092
Evaluation of shield tunneling-induced structural response
LIU Xiangyong1, ZHANG Xin2,3*, WANG Jun1, ZHAO Taoning1, ZHU Xianfa1
1. Nantong Urban Rail Transit Co., Ltd., Nantong 226000, Jiangsu, China;
2. Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China;
3. Key Laboratory of Geotechnical and Underground Engineering of Minister of Education, Shanghai 200092, China
下载:  PDF (3481KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为建立快速、准确而高效的盾构施工对邻近建筑物影响的评价方法,选取基于角变形和水平应变的主应变为建筑物受盾构施工影响程度的评价指标,通过数值模拟揭示建筑物与地层相互作用对建筑物变形指标的影响规律。结果表明,建筑物的抗弯刚度和轴向刚度对建筑物角变形指标影响较为显著,而建筑物水平应变指标主要受建筑物轴向刚度的影响。进一步量化各影响因素对建筑物变形指标的影响,建立考虑建筑物影响的建筑物变形指标计算方法,引入损伤势指标(damage potential index, DPI)为影响程度度量指标,提出一种考虑建筑物与地层相互作用,且便于工程应用的盾构施工对邻近密集建筑物群结构影响评价方法,该方法应用于工程实践后与实测结果吻合良好。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘祥勇
张鑫
王军
赵涛宁
朱先发
关键词:  盾构隧道  地层变形  建筑物损伤  影响评价    
Abstract: In order to establish a fast, accurate and efficient evaluation method for the impact of shield construction on adjacent buildings, the principal strain based on angular distortion and lateral strain was selected as the evaluation index to assess the damage to the building. Numerical investigation was carried out to explore the interaction between the building and the ground, and the results showed that the bending stiffness and the axial stiffness had a significant influence on the angular deformation index of the building, while the horizontal strain index of the building was mainly affected by the axial stiffness. A calculation method of building deformation index considering the influence of the building was established, and DPI as a measure of the influence degree was introduced. A method for evaluating the influence of shield construction on adjacent buildings was presented, which considered the interaction between buildings and strata, and was convenient for engineering application. The results of the proposed evaluation method were in good agreement with the field observed data.
Key words:  shield tunnel    ground deformation    building damage    impact evaluation
收稿日期:  2021-09-22      修回日期:  2021-10-28      发布日期:  2022-09-20     
中图分类号:  U455  
通讯作者:  张鑫(1997— ),男,湖南株洲人,硕士研究生,主要研究方向为盾构隧道力学性态及其对环境的影响.    E-mail:  zhangxin97@tongji.edu.cn
作者简介:  刘祥勇(1980— ),男,江苏东海人,硕士,高级工程师,主要研究方向为隧道工程及基坑工程等. E-mail:47150235@qq.com.
引用本文:    
刘祥勇, 张鑫, 王军, 赵涛宁, 朱先发. 盾构施工对邻近建筑物群结构影响评价[J]. 隧道与地下工程灾害防治, 2022, 4(3): 99-106.
LIU Xiangyong, ZHANG Xin, WANG Jun, ZHAO Taoning, ZHU Xianfa. Evaluation of shield tunneling-induced structural response. Hazard Control in Tunnelling and Underground Engineering, 2022, 4(3): 99-106.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2022/V4/I3/99
[1] 丁智,魏新江,魏纲.盾构隧道与邻近结构物相互影响研究分析[J]. 工程地质学报, 2007, 15(增刊1): 644-649. DING Zhi, WEI Xinjiang, WEI Gang. Research and analysis of interaction between shield tunnel and adjacent structure[J]. Journal of Engineering Geology, 2007, 15(Suppl.1):664-649.
[2] MROUEH H, SHAHROUR I. Three-dimensional finite element analysis of the interaction between tunneling and pile foundations[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2002, 26(3): 217-230.
[3] 卿伟宸,廖红建,钱春宇. 地下隧道施工对相邻建筑物及地表沉降的影响[J]. 地下空间与工程学报, 2005, 1(6): 960-963. QING Weichen, LIAO Hongjian, QIAN Chunyu. The effect construction on the settlements of adjacent building and earth surfaces of underground tunnel[J]. Chinese Journal of Underground Space and Engineering, 2005, 1(6):960-963.
[4] 彭畅,伋雨林,骆汉宾.双线盾构施工对邻近建筑物影响的数值分析[J]. 岩石力学与工程学报, 2008, 27(增刊2): 3868-3874. PENG Chang, JI Yulin, LUO Hanbin. Numerical simulation of effects of double-tube parallel shield tunneling on neighboring building[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(Suppl.2):3868-3874.
[5] 赵星. 盾构隧道施工对邻近建筑物的影响[D]. 邯郸: 河北工程大学, 2017. ZHAO Xing. The influence of shield tunnel construction on nearby buildings[D]. Handan: Hebei University of Engineering, 2017.
[6] 魏纲,孙樵,洪子涵. 类矩形盾构施工对邻近建筑物影响的数值模拟[J]. 低温建筑技术, 2018,40(12): 86-89. WEI Gang, SUN Qiao, HONG Zihan. Numerical simulation of influence of quasi-rectangular shield construction on adjacent buildings[J]. Low Temperature Architecture Technology, 2018, 40(12):86-89.
[7] 陶永虎,饶军应,熊鹏,等. 地铁暗挖隧道下穿既有火车站站场施工方案安全性评估[J]. 隧道与地下工程灾害防治, 2020, 2(4): 74-82. TAO Yonghu, RAO Junying, XIONG Peng, et al. Safety evaluation of construction schemes for underground excavated metro tunnels passing existing railway station yards[J].Hazard Control in Tunnelling and Underground Engineering, 2020, 2(4): 74-82.
[8] SKEMPTON A W, MACDONALD D H. The allowable settlements of buildings[J]. Proceedings of the Institution of Civil Engineers, 1956, 5(6): 727-768.
[9] BURLAND J B. Assessment of risk of damage to buildings due to tunnelling and excavation[C] //Imperial College of Science, Technology and Medicine. Proceedings of the First International Conference on Earthquake Geotechnical Engineering. Tokyo, Japan: [s.n.] , 1995.
[10] FINNO R J, FTV J R, ROSSOW E, et al. Evaluating damage potential in buildings affected by excavations[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(10): 1199-1210.
[11] 陈文. 基于应变控制的隧道盾构施工引起的砌体建筑损伤预测分析[J]. 公路, 2019,64(6): 270-277. CHEN Wen. Monitoring and analysis of ground settlement of tunnels constructed by shield method based on strain control[J]. Highway, 2019, 64(6): 270-277.
[12] SON M, CORDING E J. Estimation of building damage due to excavation-induced ground movements[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(2): 162-177.
[13] BOSCARDIN M D, CORDING E J. Building response to excavation-induced settlement[J]. Journal of Geotechnical Engineering, 1989, 115(1): 1-21.
[14] BURLAND J B, WROTH C P. Settlement of buildings and associated damage[C] //Proceedings of Conference on Settlement of Structure. London, UK: Pentech Press, 1974.
[15] PECK R B. Deep excavations and tunneling in soft ground[C] //Proceedings of the 7th International Conference on Soil Mechanics and Foundation Engineering. Mexico City, USA: [s.n.] , 1969.
[16] O'REILLY M P, NEW B M. Settlements above tunnels in the United Kingdom-their magnitude and prediction[C] //Proceedings of the third International Symposium, organized by the Institution of Mining and Metallurgy.London, UK: [s.n.] , 1982.
[17] POTTS D M, ADDENBROOKE T I. A structure's influence on tunnelling-induced ground movements[J]. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 1997, 125(2): 109-125.
[18] 钱家欢,殷宗泽. 土工原理与计算[M]. 2版.北京:中国水利水电出版社, 1996.
[19] BURLAND J B, STANDING J R, JARDINE F M. Building response to tunnelling, case studies from construction of the Jubilee Line Extension[M]. London,UK: Thomas Telford Publishing, 2001.
[20] SCHUSTER M, KUNG T C, JUANG C H, et al. Simplified model for evaluating damage potential of buildings adjacent to a braced excavation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(12): 1823-1835.
[21] 欧阳文彪,丁文其,谢东武. 考虑建筑刚度的盾构施工引致沉降计算方法[J]. 地下空间与工程学报, 2013, 9(1):155-160. OUYANG Wenbiao, DING Wenqi, XIE Dongwu. Calculation method for settlement due to shield tunnelling considering structure stiffness[J]. Chinese Journal of Underground Space and Engineering, 2013, 9(1):155-160.
[1] 魏纲, 徐天宝, 张治国. 复杂应力路径下波纹钢加固盾构隧道数值分析[J]. 隧道与地下工程灾害防治, 2023, 5(2): 24-32.
[2] 王智, 刘祥勇, 朱先发, 洪小星, 沈一鸣, 张冰利. 小曲率半径隧道施工对盾构管片结构影响[J]. 隧道与地下工程灾害防治, 2023, 5(1): 45-54.
[3] 韩兴博,陈子明,苏恩杰,梁晓明,宋桂峰,叶飞. 盾构隧道围岩压力分布规律及作用模式[J]. 隧道与地下工程灾害防治, 2022, 4(4): 34-43.
[4] 喻伟,林赞权,朱彬彬,汪元冶,丁文其,乔亚飞,张晓东,龚琛杰. 盾构隧道防水密封垫材料的高温老化后性能[J]. 隧道与地下工程灾害防治, 2022, 4(4): 52-58.
[5] 潘秋景, 李晓宙, 黄杉, 汪来, 王树英, 方国光. 机器学习在盾构隧道智能施工中的应用——综述与展望[J]. 隧道与地下工程灾害防治, 2022, 4(3): 10-30.
[6] 赵辰洋, 罗毛毛, 邱静怡, 倪芃芃, 赵锋烽. 盾构隧道施工引起地层变形预测方法综述[J]. 隧道与地下工程灾害防治, 2022, 4(3): 31-46.
[7] 张治国, 程志翔, 陈杰, 吴钟腾, 李云正. 盾构隧道接缝渗漏水诱发既有管线变形模型试验[J]. 隧道与地下工程灾害防治, 2022, 4(3): 77-91.
[8] 丁智, 李鑫家, 张霄. 基于机器学习的盾构掘进地表变形预测研究与展望[J]. 隧道与地下工程灾害防治, 2022, 4(3): 1-9.
[9] 吕玺琳, 赵庾成, 曾盛. 砂层中盾构隧道开挖面稳定性物理模型试验[J]. 隧道与地下工程灾害防治, 2022, 4(3): 67-76.
[10] 黄昕, 谷冠思, 张子新, 李昀. 考虑渗流的泥水平衡盾构隧道稳定性数值模拟[J]. 隧道与地下工程灾害防治, 2022, 4(2): 28-38.
[11] 许有俊, 王智广, 张旭, 郭飞, 高胜雷, 杨昆. 小转弯半径盾构隧道施工引起的地层变形特征[J]. 隧道与地下工程灾害防治, 2022, 4(2): 11-18.
[12] 陈峰军, 宗军良, 王祺, 禹海涛. 地面出入式超浅埋盾构隧道静力响应模型试验[J]. 隧道与地下工程灾害防治, 2022, 4(2): 66-72.
[13] 马少俊, 李鑫家, 王乔坎, 丁智. 某深基坑开挖对邻近既有盾构隧道影响实测分析[J]. 隧道与地下工程灾害防治, 2022, 4(1): 86-94.
[14] 涂智溢,郭洪雨,孙飞,钟方杰,郑浩龙,张哲. 闹市区复杂环境下大直径盾构小净距下穿运营地铁隧道的应对措施及分析[J]. 隧道与地下工程灾害防治, 2021, 3(4): 75-84.
[15] 姜叶翔,周奇辉,羊逸君,苏凤阳,刘尊景,张霄,丁智. 采用管棚预支护方法的盾构穿越既有地铁隧道变形特征及加固影响实测分析[J]. 隧道与地下工程灾害防治, 2021, 3(2): 49-60.
[1] QIAN Qihu. Scientific use of the urban underground space to construction the harmonious livable and beautiful city[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 1 -7 .
[2] DENG Mingjiang, LIU Bin. Challenges, countermeasures and development direction of geological forward-prospecting for TBM cluster tunneling in super-long tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 8 -19 .
[3] DING Xiuli, ZHANG Yuting, ZHANG Chuanjian, YAN Tianyou, HUANG Shuling. Review on countermeasures and their adaptability evaluation to tunnels crossing active faults[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 20 -35 .
[4] JIAO Yuyong, ZHANG Weishe, OU Guangzhao, ZOU Junpeng, CHEN Guanghui. Review of the evolution and mitigation of the water-inrush disaster in drilling-and-blasting excavated deep-buried tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 36 -46 .
[5] ZHANG Qingsong, ZHANG Lianzhen, LI Peng, FENG Xiao. New progress in grouting reinforcement theory of water-rich soft stratum in underground engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 47 -57 .
[6] XIA Kaiwen, XU Ying, CHEN Rong. Dynamic tests of rocks subjected to simulated deep underground environments[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 58 -75 .
[7] HONG Kairong. Study on rock breaking and wear of TBM hob in high-strength high-abrasion stratum[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 76 -85 .
[8] TAN Zhongsheng. Application experimental study of high-strength lattice girders with heat treatment in tunnel engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 86 -92 .
[9] CHEN Jianxun, LUO Yanbin. The stability of structure and its control technology for lager-span loess tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 93 -101 .
[10] JING Hongwen, YU Liyuan, SU Haijian, GU Jincai, YIN Qian. Development and application of catastrophic experiment system for water inrush in surrounding rock of deep tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 102 -110 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn